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Logistics

• Projects
• Meetings
• Grading
• Presentations next Thursday morning

• Optional Homework posted



Explain Your Decisions

Sources: Review: example from https://demo.allennlp.org/sentiment-analysis/roberta-sentiment-analysis. Recidivism: Random sample from Broward County, Florida records from 2013 and 2014, 
based on data acquisition and analysis by ProPublica, displayed as in Dressel and Farid 2018 https://www.science.org/doi/10.1126/sciadv.aao5580. Image: https://www.boredpanda.com/puppy-
looks-like-cat-dog-hybrid/

all the amped up tony hawk 
style stunts and thrashing 
rap-metal can't disguise the 
fact that, really, we've been 
here, done that.

The defendant is a Male aged 38. They 
have been charged with: Battery. This crime 
is classified as a Misdemeanor. They have 
been convicted of 0 prior crimes. They have 
0 juvenile felony charges and 0 juvenile 
misdemeanor charges on their record.

Positive or Negative Review? Dog or Cat?
Likely to get arrested 
again in next 2 years?

https://demo.allennlp.org/sentiment-analysis/roberta-sentiment-analysis
https://www.science.org/doi/10.1126/sciadv.aao5580


How did you explain it?



Main Points

• Explainable ≠ interpretable
• Models don’t have to be black-box to be accurate.
• “Amplify, Augment, Empower, and Enhance People” (-Shneiderman)



Why care?

• harms when systems aren’t reliable, safe, trustworthy
• benefits when systems empower people



Lapuschkin et al. 2019. Unmasking Clever Hans predictors and assessing what machines really learn

https://www.nature.com/articles/s41467-019-08987-4


Some Interpretable Models
All examples from Rudin et al. 2020, Interpretable Machine Learning: Fundamental 
Principles and 10 Grand Challenges

https://arxiv.org/abs/2103.11251


Rule lists and scoring systems

Angelino et al. 2017. Learning Certifiably Optimal Rule Lists for Categorical Data



Generalized Additive Models (GAM)

Figure 4: Hierarchical relationships between GAMs, additive models, linear models, and scoring
systems.

if the link function is the logistic function, then the expression describes a generalized additive
model that could be used for classification. The standard form of GAMs is interpretable because
the model is constrained to be a linear combination of univariate component functions. We can plot
each component function with fj(x·j) as a function of x·j to see the contribution of a single feature
to the prediction. The left part of Figure 5 shows all component functions of a GAM model (with
no interactions) that predicts whether a patient has diabetes. The right enlarged figure visualizes
the relationship between plasma glucose concentration after 2 hours into an oral glucose tolerance
test and the risk of having diabetes.

Figure 5: Left: All component functions of a GAM model trained using the interpret package
(Nori et al., 2019) on a diabetes dataset (Dua and Graff, 2017); Right: zoom-in of component
function for glucose concentration.

If the features are all binary (or categorical), the GAM becomes a linear model and the vi-
sualizations are just step functions. The visualizations become more interesting for continuous
variables, like the ones shown in Figure 5. If a GAM has bivariate component functions (that is, if
we choose an fj to depend on two variables, which permits an interaction between these two vari-
ables), a heatmap can be used to visualize the component function on the two dimensional plane
and understand the pairwise interactions (Lou et al., 2013). As a comparison point with decision
trees, GAMs typically do not handle more than a few interaction terms, and all of these would
be quadratic; this contrasts with decision trees, which handle complex interactions of categorical
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plasma glucose concentration after 2 hours 
into an oral glucose tolerance test

Score: risk of having diabetes. 



Prototype-based, part-based
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Figure 7: (a) Prototype-based classification of the network in Li et al. (2018). The network com-
pares a previously unseen image of “6” with 15 prototypes of handwritten digits, learned from the
training set, and classifies the image as a 6 because it looks like the three prototypes of handwritten
6’s, which have been visualized by passing them through a decoder from latent space into image
space. (b) Part-based prototype classification of a ProtoPNet in Chen et al. (2019). The ProtoPNet
compares a previously unseen image of a bird with prototypical parts of a clay colored sparrow,
which are learned from the training set. It classifies the image as a clay colored sparrow because
(the network thinks that) its head looks like a prototypical head from a clay-colored sparrow, its
wing bars look like prototypical wing bars from a clay-colored sparrow, and so on. Here, the
prototypes do not need to be passed through a decoder, they are images from the training set.

makes more sense to compare the strawberry cheesecake recipe to both the pancake recipe and the
plain cheesecake recipe. Thus, some newer case-based reasoning methods have been comparing
parts of observations to parts of other observations, by creating comparisons on subsets of features.
This allows case-based reasoning techniques both more flexibility and more interpretability.

Kim et al. (2014) formulated a prototype-parts learning problem for structured (tabular) data
using a Bayesian generative framework. They considered the example (discussed above) of recipes
in their experiments. Wu and Tabak (2017) used a convex combination of training instances to
represent a prototype, where the prototype does not necessarily need to be a member of the training
set. Using a convex combination of training examples as a prototype would be suitable for some
data types (e.g., tabular data, where a convex combination of real training examples might resemble
a realistic observation), but for images, averaging the latent positions of units in latent space may
not correspond to a realistic-looking image, which means the prototype may not look like a real
image, which could be a disadvantage to this type of approach.

Recently, there are works that integrate deep learning with prototype- and prototype-parts-
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Sums of Trees

• Fast Interpretable Greedy-Tree 
Sums (FIGS)
• Go through each tree 

independently
• Sum the outputs of each tree

• Interpretable: each tree can be 
shallow.

Diabetes



What if we need a black box 
model?
Can we “explain” such a model?



Dimensionality Reduction

7 Dimension Reduction for Data Visualization

Even in data science, a picture is worth a thousand words. Dimension reduction (DR) techniques
take, as input, high-dimensional data and project it down to a lower-dimensional space (usually 2D
or 3D so that a human can comprehend it). Data visualization can provide an intuitive understand-
ing of the underlying structure of the dataset. DR can help us gain insight and build hypotheses
so that we can build an interpretable model. With DR, biases or pervasive noise in the data may
be illuminated, allowing us to be better data caretakers. However, with the wrong DR method,
information about the high-dimensional relationships between points can be lost when projecting
onto a 2D or 3D space.

Figure 12: Visualization of the MNIST dataset (LeCun et al., 2010) using different kinds of DR
methods: PCA (Pearson, 1901), t-SNE (van der Maaten and Hinton, 2008; Linderman et al., 2019;
Poličar et al., 2019), UMAP (McInnes et al., 2018), and PaCMAP (Wang et al., 2020b). The axes
are not quantified because these are projections into an abstract 2D space.

Generally speaking, there are two primary types of approaches to DR for visualization, com-
monly referred to as local and global methods. Global methods aim mainly to preserve distances
between any pair of points (rather than neighborhoods), while the local methods emphasize preser-
vation of local neighborhoods (that is, which points are nearest neighbors). As a result, local meth-
ods can preserve the local cluster structure better, while failing to preserve the overall layout of
clusters in the space, and vice versa. Figure 12 demonstrates the difference between the two kinds
of algorithms over the MNIST handwritten figure dataset (LeCun et al., 2010), which is a dataset
where local structure tends to be more important than global structure. The only global method
here, PCA (Pearson, 1901), fails to separate different digits into clusters, but it gives a sense of
how digits are different from each other. t-SNE (van der Maaten and Hinton, 2008), which is a
local method, successfully separated all the digits, but could not also keep the scale information
that is preserved in the PCA embedding. More recent methods, such as UMAP (McInnes et al.,
2018) and PaCMAP (Wang et al., 2020b) also separated the digits while preserving some of the
global information.

Early approaches toward this problem, including Principal Component Analysis (PCA) (Pear-
son, 1901) and Multidimensional Scaling (MDS) (Torgerson, 1952), mostly fall into the global
category. They aim to preserve as much information as possible from the high-dimensional space,
including the distances or rank information between pairs of points. These methods usually ap-
ply matrix decomposition over the data or pairwise distance matrix, and are widely used for data
preprocessing. These methods usually fail to preserve local structure, including cluster structure.
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Input rollout [1] raw-attention GradCAM [31] LRP [3] partial LRP [40] Ours

Figure 1: Sample results. As can be seen, our method produces more accurate visualizations.

Input rollout [1] raw-attention GradCAM [31] LRP [3] partial LRP [40] Ours

Dog !

Cat !

Elephant !

Zebra !

Figure 2: Class specific visualizations. For each image we present results for two different classes. GradCam is the only
method to generate different maps. However, its results are not convincing.
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Chefer et al. 2021, Transformer Interpretability Beyond Attention Visualization

https://arxiv.org/abs/2012.09838v2


Other ways to interpret



SHAP values to explain the predicted cervical cancer probabilities of two individuals

Source: https://christophm.github.io/interpretable-ml-book/shap.html

Shapley Values for Explaining Predictions
Intuition: average effect of having that feature vs leaving it out



• Example: predict 
if a day will have 
more or fewer 
bike rentals than 
average
• Main model: 

random forest
• Surrogate model: 

logistic reg, 2 
features

https://christophm.github.io/interpretable-ml-book/lime.html

Local Interpretable Model-agnostic Explanations
Intuition: fit a simple model in the “neighborhood” of an example



Explainable 
vs 
Interpretable

Explainable: why did the 
black box model gave us 
this answer?

Interpretable: the 
model isn't a black box



Ben Shneiderman – HCAI Tutorial at ACM IUI 2021 - https://iui.acm.org/2021/hcai_tutorial.html





https://www.cs.umd.edu/~ben/goldenrules.html

Design Guidelines


