
 1

CS 332, Fall 2017, Norman Nov. 20, 2017

Lab: Layer 3

Overview

In the previous lab, we simulated layer 2 communication on a LAN (local area network).

In this lab, we will build layer 3, so that (eventually) we can forward packets across

multiple networks – even networks that use different Layer 2s (as in L2GA or L2GB).

Note: we are NOT implementing routing in this lab, so you do not have to implement a

routing table, etc. Thus, when you finish this lab, you won’t be able to send packets to

other networks (yet), just to other hosts on the same network.

Background: IP Addresses

A MAC address is a physical address, and plays a role similar to a person’s social

security number. Why doesn't the telephone company let you call someone by dialing

their social security number? That would require every telephone switch to know the

location of everybody’s telephone in the world! That's why the phone company assigns

you a logical address—a telephone number. When you dial 1-202-456-1111, the

telephone switch at the other end of your phone line has no idea where to find the phone

you’re calling, but it does know that the number starts with a 1, and is therefore a long

distance call. Your call gets passed off to another switch, which looks at the 202 and

connects you to a switch in Washington, DC. Another switch recognizes the 456

exchange and ultimately your call is connected to the White House by a series of

switches, each of which knows only some of the information needed to route your call.

Routing telephone calls is made simple because telephone numbers are hierarchical.

Likewise, IP addresses are hierarchical. IP addresses (such as 205.214.169.35)

consist of 4 octets (8-bit values), where the first octets identify a network, and the last

octet identifies a particular host machine. Hence, IP routers can route packets without

knowing the locations of all IP addresses.

In our simplified Layer 3 (L3) implementation, we'll use 8-bit L3 addresses, consisting of

a 4-bit network part and a 4-bit host part. For example, we'll represent the L3 address

1.3 with the binary value 0001.0011. Each of our L3 packets will contain the fields

we decided on together, as shown in our class wiki.

In our protocol we are going to use the universally unique Layer 2 (“MAC”) address as

the host part of the L3Address. The network part of the address will be uniquely assigned

to each network that we create. Combining these two into an L3Address means every

 2

L3Address will be unique, and we won’t have to create an ARP-like protocol to get the

Layer 2 address for an L3Address!

Get Set up

Each team member should get the lab2 files from an agreed-upon person – probably a

person who got a very good grade on lab2. You might have this agreed-upon person fix

any bug that was found by your professor before you make the copies.

Then, go look at cs.calvin.edu/courses/cs/332/schedule.html where

in Week 10 you will find a link to javadoc output from my implementation of this lab.

This Javadoc output should be used as a guide for this lab. Each person on your team

MUST work independently on her/his code, but you SHOULD test your implementations

against each other to make sure they are interoperable.

Do the following steps.

L3Address and L3Packet

Create a new class called L3Address, which should store two ints, representing the

network and host portions of an address. See the javadoc for my implementation.

Implement all the methods defined in that documentation.

Now, do the same for the L3Packet.java class. Make sure you store the src and

dest address fields as L3Addresses. The length field is an integer and the payload is

a String.

L3Shim

The L3Shim in my old implementation has the same basic functionality as the

Layer2Handler (and upcoming L3Handler). The L3Shim layer is the layer in my

model that handles the small 2-bit field that all Layer 3 protocols had to define as their

first two bits – to uniquely identify the type of protocol that follows those 2 bits. This is

the class that will implemented the multiplexing and demultiplexing of layer 3 protocols

within layer 2. You need to implement similar functionality in your layer 2 so that you

demultiplex on the type field in layer 2, passing L3 packets up to your L3Listener, but

making sure that layer 2 packets with a different type value are dropped.

L3Handler

 3

Create a new class called L3Handler, which should store an L3Address, an

L2GXHandler, and an L3Listener. The L2GXHandler variable is a reference

to the object “below” this layer and the L3Listener object is the object called back

when a L3 packet is received at this object and needs to be passed up to the higher layer.

Implement all the methods, as documented from my implementation.

L3Listener

Create an interface called L3Listener, which should require the implementation of the

method packetReceived. This method should take in an L3Handler (the handler

that received the packet) and an L3Packet (the packet itself).

L3Display

Create a class L3Display that functions similarly to the Layer2Display. The

documentation from my implementation explains it all.

Test

Look at Test.java to see how I tested my code. Yours should work too!

Submit your code in /home/cs/332/current/<yourid>/lab3. Please, please

call the directory lab3, not Lab3, or Lab 3.

Make sure your documentation is thorough and complete. Make sure you write beautiful

hospitable code: good spacing, good consistent indentation, etc.

	Lab: Layer 3
	Overview
	Background: IP Addresses
	Get Set up
	L3Address and L3Packet
	L3Shim
	L3Handler
	L3Listener
	L3Display
	Test

