
CS332:	TCP	Chat	Server	

	
For	this	assignment,	you	need	to	write	the	chat	server	for	which	you	wrote	a	client	
last	week.		
	
The	basic	outline	of	the	server	code	is	this:	

• Your	code	reads	options	from	the	command	line	(see	below).	
• Your	code	opens	a	socket,	makes	it	REUSEADDR (look	it	up!),	binds	it	to	a	

port	(default	12345),	and	begins	listening	on	it.	
• Add	this	main	socket	to	a	list	of	sockets	from	which	to	read.		I’ll	refer	to	that	

variable	as	socks.	
• In	a	forever	loop:	

o Do	a	select() on	socks	
o If	the	socket	that	is	ready	to	read	from	is	the	main	one,	accept	the	new	

connection,	and	send	the	string	“Thank	you	for	connecting”	on	the	
socket.		Add	the	new	client	socket	to	your	socks	list.	

o Else	(the	socket	is	an	already	connected	client	socket):	
§ Call	recv(1024)	on	the	socket	(to	read	up	to	1024	bytes),	

reading	in	the	message	from	the	socket.	
§ If	the	result	is	bad,	remove	that	socket	from	socks.	
§ Else:	

• Send	the	message	you	read	from	the	socket	on	all	the	
other	client	sockets.	

	
You	may	implement	this	in	any	language	you	want,	but	the	outline	I’ve	given	you	
above	is	based	on	my	python	implementation.	
	
You	must	implement	these	command-line	arguments:	
	
Name(s)	 Option	 Meaning	 Default	value	(if	

option	not	given)	
-v,	--verbose	 	 Turn	on	verbose	

printing	to	help	
debugging	

False	

-p,	--port	 Port	number	 The	TCP	port	the	
server	is	listening	
on.	

12345	

	
	
When	verbose	is	turned	on,	your	client	should	print	out	enough	information	to	help	
you	figure	out	what	your	program	is	doing.	E.g.,	my	client	prints	out	a	message	
whenever	it	gets	a	new	connection	from	a	client,	whenever	that	client	connection	
goes	away,	whenever	it	resends	a	message	to	all	clients,	etc.	



	

Implementation	Notes	
	
Your	code	should	handle	errors	gracefully.		I.e.,	if	a	system	call	returns	an	error,	you	
should	print	out	a	useful	message	and	exit	gracefully.		The	user	should	not	see	a	core	
dump	or	a	stack	trace	printed	out.		You	must	handle	the	case	where	the	server	goes	
down	when	your	client	is	still	connected.	
	
You	will	find	the	first	lines	of	the	talk_server.py	file	in	
/home/cs/332/sp2016/chat/	folder.	
	
You	exit	your	talk_server	by	doing	Ctrl-C	in	the	terminal	window	in	which	it	is	
running.	
	
There	are	a	ton	of	implementations	of	this	online.		For	your	own	learning	
experience,	do	not	copy	and	paste	code	from	them.		If	you	have	to	look	up	how	to	
use	select(),	e.g.,	you’ll	probably	see	an	implementation	of	the	client	or	server…	Try	
to	implement	as	much	as	you	can	without	copying	code	from	online.		You	must	cite	
every	place	where	you	find	code	that	you	copy	into	your	code.	
	

Those	Doing	the	Class	for	Honors	
	
The	server	must	recognize	and	respond	to	the	following	special	message	that	clients	
can	send:	
	

• /who:	return	a	string	of	info	about	who	all	is	connected.		The	string	looks	like	
this:	
	
<n> clients connected. 
<name> connected from <IP address>, <port>. 
… <previous line repeated for each client> …	
	
To	do	this,	you’ll	have	to	keep	track	of	info	about	the	names	the	clients	chose	
for	themselves,	and	where	the	clients	are	connected	from.		I	do	this	in	a	
dictionary	that	maps	the	socket	to	a	(name,	IPaddress,	port)	tuple.		The	IP	
address	and	port	you	get	from	the	result	of	the	accept()	call.		Initially,	the	
name	will	be	unknown,	so	I	just	use	the	string	“<unknown>”.		The	name	you	
will	have	to	get	from	a	message	sent	by	the	client.			Recall	that	each	client	
prepends	the	following	to	the	beginning	of	each	message:		
	
<name> says: <text of message>.			
	
When	you	receive	a	message	from	a	client,	parse	that	message,	extracting	the	
<name>	and	update	your	dictionary	with	the	name.	



Grading	Rubric:	20	pts	total	
	

• 15	points	for	correctness.	
o Operates	correctly:	8	
o Handles	command-line	options	correctly:	4	
o Handles	error	conditions	correctly:	3	

• 5	points	for	clean,	well-indented,	well-documented	code.	
	

Don’t	forget	to	put	your	name,	date,	etc.,	in	a	comment	at	the	top	of	your	file(s).		
Submit	by	copying	to	/home/cs/332/current/<yourid>/chat/.	


