
CS332, Fall 2019: TCP Chat Client and Server 

	
For	this	assignment,	you	need	to	write	a	chat	system	that	will	allow	multiple	users	
to	chat	interactively	in	a	Terminal	window.		One	server	will	be	running	on	a	
designated	port,	and	any	number	of	clients	can	connect	and	talk	to	each	other	
interactively.	
	
Here	are	some	screen	shots	when	2	clients	have	connected	to	the	server.	
	

	
	
	

	
	
The	basic	functionality	is	this:	

• Your	client	reads	options	from	the	command	line	(see	below).	
• Your	client	connects	to	the	server.	
• Your	client	continuously	reads	from	stdin	and	from	the	server	socket.			

o If	it	gets	data	from	stdin,	it	prepends	<Yourname>	says:	to	the	text	
and	sends	it	to	the	server.	

o If	it	gets	data	from	the	socket,	it	prints	it	to	stdout	and	flushes	stdout.	



You	may	implement	this	in	python3,	C,	or	C++.		I’ve	done	it	in	python	because	it	is	
clean	and	neat	and	I	love	it.	
	
You	must	implement	these	command-line	arguments:	
	
Name(s)	 Option	 Meaning	 Default	value	(if	

option	not	given)	
-v,	--verbose	 	 Turn	on	verbose	

printing	to	help	
debugging	

False	

-s,	--server	 Server	name	or	IP	
address	

The	machine	the	
server	is	running	
on	

127.0.0.1	(i.e.,	
localhost	–	this	
machine)	

-p,	--port	 Port	number	 The	TCP	port	the	
server	is	listening	
on.	

12345	

-n,	--name	 A	string	 The	name	by	which	
you	are	identified	
to	others.	

Your	machine	
name.	

	
	
When	verbose	is	turned	on,	your	client	should	print	out	enough	information	to	help	
you	figure	out	what	your	program	is	doing.	E.g.,	my	client	prints	out	a	message	
whenever	it	gets	something	from	stdin	or	the	socket	and	whenever	it	sends	
something	out	stdin	or	the	socket.	
	

Implementation Notes 
	
Your	main	loop	is	a	while	True:	loop	and	the	first	thing	you	do	inside	there	
(typically)	is	a	call	to	select().		The	select()	call	has	stdin	and	the	server	socket	in	the	
list	you	are	waiting	to	read	from.	
	
Your	code	should	handle	errors	gracefully.		I.e.,	if	a	system	call	returns	an	error,	you	
should	print	out	a	useful	message	and	exit	gracefully.		The	user	should	not	see	a	core	
dump	or	a	stack	trace	printed	out.	You	must	handle	the	case	where	the	server	goes	
down	when	your	client	is	still	connected.	
	
You	will	find	the	first	lines	of	the	talk_client.py	file	in	
/home/cs/332/fa2019/chat/	folder.	
	
My	talk_server	file	is	in	/home/cs/332/fa2019/chat.			
Run	it	on	a	linux	box	in	either	lab:	./talk_server	-h.	The	–h	option	shows	what	the	
command-line	options	are.		Running	it	with	–v	is	especially	useful.		You	will	need	to	
run	the	server	before	you	can	legitimately	test	your	client.	
	



You	exit	your	talk_client	(and	the	talk_server)	by	doing	Ctrl-C	in	the	terminal	
window	in	which	it	is	running.	
	
There	are	a	ton	of	implementations	of	this	online.		For	your	own	learning	
experience,	do	not	copy	and	paste	code	from	them.		If	you	look	up	how	to	use	
select(),	e.g.,	you’ll	probably	see	an	implementation	of	the	client	or	server…	Try	to	
implement	as	much	as	you	can	without	copying	code	from	online.		You	must	cite	
every	place	where	you	find	code	that	you	copy	into	your	code.	
	

Those Who Want to do something really cool 
	
	
Those	who	want	to	make	a	really	nice	system	could	consider	this:	

• Use	curses	to	display	each	chatter’s	lines	in	a	different	color.	
• Use	curses	to	split	the	window	into	two	parts:	you	type	in	one	half	and	all	

the	others’	output	goes	into	the	other	half.	
	

Grading Rubric: 20 pts total 
	

• 15	points	for	correctness.	
o Operates	correctly:	8	
o Handles	command-line	options	correctly:	4	
o Handles	error	conditions	correctly:	3	

• 5	points	for	clean,	well-indented,	well-documented	code.	
	

Don’t	forget	to	put	your	name,	date,	etc.,	in	a	comment	at	the	top	of	your	file(s).		
Submit	by	copying	to	/home/cs/332/current/<yourid>/chat/.	


