
 1 

CS 332, Spring 2016, Norman    April 21, 2016 
 
 

Lab: Router Lab 
 

Background 
 
In the previous lab, we created a Layer 3 Host, and we could create, send, and receive L3 
packets. But, we didn’t have any routing implemented, so really it wasn’t all that useful.  
In this lab, we’ll implement a router, thus allowing us to send packets across multiple 
networks. Additionally, we’ll implement a L3Host that supports a routing table, and 
optionally, multiple interfaces on different networks. 
 

Step 1: Get Set Up 
 
I am giving you my implementation of the last lab – Layer 3 Lab. Please note these 
things: 
 

• As in the last lab, my code has a Layer2Endpoint. A Layer2Endpoint is 
a subclass of a L2Handler. Your code probably just had a L2Handler. So, 
wherever you see “Layer2Endpoint” in my Javadoc, think “L2Handler”. 

• You are going to need to implement these classes – I’ll guide you through these in 
this lab, but you might want to take a look at them now: 

o L3Iface.java 
o L3RoutedIface.java 
o RoutingTable.java 
o Router.java 
o L3Host.java 

• L3Host.java is a little strange. It is an L3Listener (meaning that it will 
receive packets from the L3Handler), but it also has-a L3Listener field, 
which means another object can register to get packets from the L3Host object. 
That other object will be an L3HostDisplay. 

 
My code for layer 3 is in /home/cs/332/sp2016/layer3. Documentation for 
this lab is in /home/cs/332/sp2016/lab4router.  You will find there the 
documentation for my implementation, along with the code for Test.java and 
L3Display.java. 

Step 2: Inspect the Final Test 
 
To understand where we are going and what we have to implement, take a look at 
Test.java’s testRouting() function – the only function called by main().  Notice 



 2 

the comment above the function that gives a very bad little picture of the network 
topology the code creates. Now, look at the first part of the code. First, we create 3 LANs 
(“LightSystems”). Then, we create a router “r1”. Then, we create a 
Layer2Endpoint (you should change this to a L2Handler) on the first LAN, with 
MAC address 11. We pass that object to a new L3RoutedIface object, which also 
takes the network id as a parameter (1). That object gets added as an interface to router 
r1. The code continues on from there. 
 
Notice also how we add default routes to the routers. 
 
And, we create 2 L3Hosts, each with 1 interface, and each being displayed with an 
L3HostDisplay GUI. I’m giving you my code for the L3HostDisplay. You may 
want to inspect that now and make sure you understand it. Note that the GUI allows the 
user to type any letters into the data field, and they will be converted to ASCII values and 
sent over the network. 
 

Step 3: Subclass L3Handler 
 
You have already implemented an L3Handler in the last lab. 
 
But, look at my L3Handler’s Javadoc. You can see I’ve updated my comments there 
for a few things. I’ve also made the class abstract. The class will be subclassed by 
L3Iface and L3RoutedIface, which only implement a constructor (which only 
calls the super() constructor) and the dropReceivedPacket() method. Create those 
classes now, and implement them, conforming to the Javadoc I’ve provided for you. 
Also, change L3Handler’s dropReceivedPacket() to just throw a 
RuntimeException. 
 
Now, change L3Handler’s send() method to take the second parameter nextHop, 
and use it in its call to handler.send(). The code uses nextHop.getHost() to get 
the MAC address that is passed down in handler.send(). 
 
Add a simple toString() for L3Handler to just return a string saying “this is the L3 
handler with this L3 address”, or something like that. 
 

Step 4: Router Class 
 
Now, create a Router.java class. A Router instance holds an 
ArrayList<L3RoutedIface>, a RoutingTable instance, and a String name 
that is a nice human-readable name for this router. Write the constructor code, and write 
the code for addL3Iface(). For the latter, don’t try to implement the code to call the 
routing table’s addDirectRoute() call yet. 
 



 3 

Now, implement the packetReceived() method, following the Javadoc I’ve provided 
for you. The last step in packetReceived() is a call to route(), which we haven’t 
implemented yet. 

Step 5: Routing Table Class 
 
The RoutingTable class encapsulates all the functionality of storing a routing table, 
adding routes to it, and finding a best route given a destination L3 address. The class has 
an inner class Entry that represents, in essence, a single row in the table. Using the 
provided Javadoc, define the RoutingTable class and define and implement its inner 
class Entry. Note that my code has this line: 
 
this.isLocal = nextHop.equals(new L3Address(0, 0)); 
 
which requires you to create an equals() method in L3Address. 
 
In the outer class (RoutingTable), define two instance variables, table, an 
ArrayList<Entry> and defaultRoute, an Entry. Create the (empty) 
constructor, and write the code for route(). Note that the code in route() is not very 
complicated when we don’t have subnet masks, etc… 
 
In fact, write all the code for the class. The Javadoc should be very helpful to guide you 
in this. 
 

Step 6: Back to the Router 
 
Now that you’ve implemented the RoutingTable class, go back to your Router 
class. The first thing to do is to go to the addL3Iface() method and add a call to 
addDirectRoute().  This is consistent with how IP and IP interfaces work – when an 
interface is added on a machine, a direct route is added to the routing table.   
 
Next, implement the addRoute() and addDefaultRoute()s methods, which just call 
the routing table’s method, passing in the Router instances ifaces as the last 
parameter. 
 
Next, implement route(). The Javadoc is extensive, so you should be able implement it 
from that. My code required the addition of a method to L3Packet called 
decrHopsLeft(). 
 
Finally, make sure your call to route() from packetReceived() looks correct. 
 

Step 7: Now, to the host, with the most 
 



 4 

Next, we need a class to represent a host object that can have one interface. Create a class 
called L3Host(). An L3Host is not that different from a Router, except that packets 
that are received are not routed. They are just passed up to any listener that has registered 
itself. 
 
Look at the Javadoc and see the instance variables the class needs. A lot of the code in 
this class is similar or identical to the code in the Router class. In fact, I copied (Yuck!) 
the code for the two addDefaultRoute()s from my Router implementation (I 
couldn’t figure out a nice way to share the code without copying it). 
 
Implement all the methods in L3Host. 
 

Step 8: Test and Submit your code 
 
At this point, I think all the code should be implemented.  See if it works!  
 
NOTE NOTE NOTE: I will be testing the code with a more complicated network setup – 
e.g., with multiple hosts on the same network, and with a host on the network with the 2 
routers. You should make sure you code works for these kinds of more complicated set 
ups. 
 

Step 9: (Optional) A Deficiency 
 
One thing I’m not happy about is that I don’t have a really nice way to include in my 
print statements the identifier of the object that is generating the statement. For example, 
I see messages like these: 
 
route: for dest 1.19 sending directly via iface 1.11 
 
That’s nice, but it doesn’t say which “device” – r1, r2, host1, host2, etc. – is generating 
this message. If anyone can figure out a nice way to do this, I’m all ears. 
 
 
Submit your code in /home/cs/332/current/<yourid>/lab4router. 
 
Make sure your documentation is thorough and complete.  Make sure you write beautiful 
hospitable code: good spacing, good consistent indentation, etc. Make me proud!   
 
See the end of this doc for the Grading Rubric. 
 

Step 10: For those doing the course for honors 
 



 5 

You need to also add a host to the topology that is multi-homed – i.e., it is on two 
different networks with two different interfaces.  To do this, make the L3Host support 
having multiple interfaces. This host should not do any routing between interfaces.  Add 
code to the Test.java file to add this multi-homed host to the network. 
 
 
Grading Rubric 
 
20 points total: 

• 14 points for code working 
• 6 points for code beauty – good indentation, documentation, etc. 

 
Extra credit: 

• +5 points for using your own code submitted for Layer 3. 
• +1 point for each 12 hours early you submit your code, up to a total of 8 points 

(4.5 days early). 
o E.g., If due date is May 3, 23:59:59, and you submit sometime between 

May 3, 0:00:00 and May 3, 11:59:59, you get +1 points.  Submit between 
May 2, 11:59:59 and May 2, 23:59:59, and you get +2 points. 


