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CS332, Norman      Sept. 23, 2019 
 

Assignment: Layer 2  
 

Background:  Frame of Reference 
 
In the previous lab, we learned how to broadcast bits by switching a light bulb on and off.  
This light bulb system constitutes the physical layer of our simulated network protocols, 
much like the cables, hubs, wireless transmitters, etc., form the physical layer we use to 
connect to the Internet.  This physical layer is referred to as layer 1. The BitHandler 
class you developed already was the first step on our journey into layer 2:  the data link 
layer. The most widespread example of a layer 2 protocol is Ethernet. In this lab, you'll 
implement our own Layer 2. 
 
So far we have used our BitHandler class to broadcast meaningless strings of bits.  
When we receive such a string, how can we know if it was meant for us, or who it came 
from, or if we have correctly identified the same bits intended by the sender? 
 
Every frame (the term we use for a layer-2 packet) will have a single 1-bit preamble: a 
leading 0. The leading 0 is simply used for synchronization purposes.   
 
Although each node on a LAN (segment) can see every frame that is sent, it is expected 
that only the designated recipient will examine the contents of the frame. All layer-1 
BitHandler objects will see the bits, and pass them up to layer 2, but only the layer 2 
object of the designated recipient will keep the frame – all others should drop it. 
 
Occasionally, however, it will be useful to designate that a frame is intended for all nodes 
on the network. The destination address in this case, as you know, will be broadcast 
address. 
 
To determine that a frame has been transmitted and read correctly, some redundant 
information must be included in the frame. Your benevolent professor decided this will 
be a single-bit parity field. 
 

Step 1:  Framed 
 
Copy your files from lab1 into a new directory (or, you may start with your benevolent 
professor’s code, which he’ll make available). In this directory, create a new file/class 
called L2Frame. The L2Frame stores an instance variable for each field in your layer 2 
frame: e.g., the source and destination MAC addresses (probably stored as integers), 
vlanId, length, etc., along with a payload String. Create an explicit-value constructor that 
takes in values you need, and stores them, then computes derived fields, like length and 
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the error detection field value. Also, create getters for all fields.  (You might be wise to 
create a test at this point to make sure your two constructors are correct. Oh wait, because 
you know the value of test-driven development, you probably created the test before you 
wrote the code, right?) 
 
In L2Frame, write a static method toBinary that takes in an integer value and an 
integer length, and returns a string of bits of the given length representing the given value 
in binary. You may assume that the value will fit in the number of bits given by length. 
(Again, the smart student will create a test first and make sure toBinary works.) 
 
Also, write a static method computeErrorCheck that takes in a bit String, and 
computes the error checking value, of the correct number of bits. 
 
Create L2Frame's toString method to create and return the bit string corresponding 
to the whole frame. Don’t forget to prepend the “0” preamble to the beginning of it. 
 
Finally, create a public static int constant called BCAST_ADDR and initialize it 
to the value that represents a broadcast address. This is going to be useful later. 
 
At this point it would probably be wise to test your code in L2Frame to see if it creates 
legal-looking frames. Just comment out the code in Test.java and put in new code to 
create some L2Frames and print out the results of calling toString() on them. 

Step 2:  Getting a Handle on L2 
 
Create a file/class called L2Handler. This handler will be responsible for 1) sending a 
given L2Frame to layer 1 to be sent, and 2) receiving a string of bits from layer 1, and 
creating a L2Frame from them. When receiving a frame from layer 1, this class will also 
decide if that frame should be received or dropped and if received, passing the received 
frame to any object at an upper layer that has requested to receive frames.  
 
To pass a frame to layer 1 to be sent, the class stores a variable handler of type 
BitHandler. To pass a frame up to a layer above, the class stores a 
layer2listener object of type Layer2Listener. 
 
Create the class constructor to take a String host, integer port, and an integer  
representing the unique layer-2 identifier for this object (perhaps called macAddr?).  
The constructor creates a new BitHandler, passing in the host and port. The 
constructor must then set itself (“this”) as a listener of the BitHandler. (This is how 
we make the connection from layer 1 to layer 2.) Store the macAddr in an instance 
variable. Create a getter for the macAddr. Write and run tests (preferably before any of 
this.) 
 
Create the toString method so as to return a string representation of the macAddr 
value. 
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Create a second constructor that takes only macAddr and uses default values for the 
other 2 parameters. Call the other constructor with these values. (See BitHandler for 
an example of this.) Test. When you think everything is working, write more tests… you 
know the drill. 
 

Step 3:  Picture Frame 
 
Copy Layer2Display.java from /home/cs/332/fa2019/lab2/.  The 
example constructor creates a couple of fields that can be used to create a frame and then 
send it. You will have to heavily alter this code to allow the user to specify the values you 
need to create your L2Frame. Also, fix the code so that the Layer 2 address (macAddr) 
of this display’s handler is shown in the title of the JFrame. 
 
Replace the comment /* SEND LAYER2 FRAME HERE */ in actionPerformed 
with code for sending the appropriate frame. Do this by calling the L2Frame() 
constructor and then using the handler to send the frame. (Note that this code won’t 
compile yet, as there are many missing pieces – including the send() method in the 
handler!) 
 
Now, go to L2Handler.java and implement the send() method. This method takes 
a L2Frame and converts it to its string representation. Next, the code should repeatedly 
wait for BitHandler.HALFPERIODs until the lower layer handler is silent. When it is 
silent, it calls the handler’s broadcast() method to send the packet. Note that with 
our implementation you actually don’t have to worry about collisions coming up from the 
lower layer. If your code waits until the handler isSilent(), then starts sending, you 
won’t see a collision. 
 
Test. Test. Test. 
 

Step 4: Parsing a Received Layer2 Frame 
 
The code for generating a Layer 2 frame is done. But, we need code to receive a frame. 
 
Add a constructor to L2Frame that takes in a string of bits and parses them to find (and 
store) the frame’s addresses, payload, etc. (Writing a toDecimal method may be quite 
helpful here.) This constructor should also look for errors in the packet – does it start with 
the required “0”? Is the length correct? Does the error check pass? The code should throw 
an exception (IllegalArgumentException) if the packet is invalid for any reason. 
(The code does NOT check if the destination address is correct, however.  That will be 
done elsewhere.) 
 
Test. 
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Step 5:  Hark!  Layer2 Speaketh 
 
Create a file/interface called Layer2Listener that has the following method 
implemented. 
 

void frameReceived(L2Handler h, L2Frame f) 
 
Edit L2Handler class so that it stores a (single) Layer2Listener. Add an API so 
that a listener can be registered: similar to how it is done in BitHandler. We’ll make 
Layer2Display be a Layer2Handler listener in the next step. 
 
First, however, we need a way for Layer 2 to receive a packet (from Layer 1).  I.e., we 
have to make our L2Handler be a listener of Layer 1. Look at BitDisplay.java 
and notice how it registers itself to be a BitHandler listener. Add similar code to 
L2Handler to be a BitHandler listener. (Notice that this code only supports one 
listener for an object…  At some point we may want to generalize this so that we can 
have a list of listeners.) 
 
Whenever it receives bits, the L2Handler will parse those bits and create a L2Frame. 
Then, it should check if the frame is destined for itself. If not, it drops the frame and goes 
on. If the frame is for itself, it checks if there is a listener registered, and if so, passes that 
frame up to its Layer2Listener, by calling the listener’s frameReceived method. 
Here is the big picture (in this picture, replace in your mind the word Ethernet with 
Layer2 or L2). 
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Finally, modify the Layer2Display class so that it listens for layer 2 frames.  When a 
frame is received, the code simply builds up a string and displays it in the 
displayField field. You may make this text as nice as you want.   
 
(In fact, if you want to make the Layer2Display much fancier, be my guest. It could, 
e.g., have fields that are used for generating frames, and separate fields that display the 
values of fields in received frames.) 
 
Testing 
 
Update your Test.java file so that you can test if your code sends and receives layer 2 
frames correctly. 
 
Submit all your code in /home/cs/332/current/<yourid>/lab2.  Recall that 
Prof. Norman is, how shall we say it kindly, a “stickler” for documentation and clean 
code. 
 
(Oh, and make sure you put your name at the top of your files in a nice header…) 

Is Life Too Easy?:  Create A Layer2 Switch 
 
Create a new class called Switch. Write a method called addSegment, which should 
take in the IP address and port number of a light system, and create a L2Handler for 
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that segment. Now go ahead and complete the Switch class, so that it receives frames 
and forwards them according to the algorithm we read about in the book.  Make sure that 
your Switch also times out entries in your port# ßà MACaddr cache. 
 
To test your Switch, you'll need to create multiple LightSystems.  You can run 
multiple LightSystems on the same computer by constructing each LightSystem 
with a different port number.  For example, you might run one on 
LightSystem.DEFAULT_PORT and another on 
LightSystem.DEFAULT_PORT + 1. 
 


