CS326: Embedded Systems and the Internet of Things Calvin University Spring 2025

Course Instructor: Prof. Derek Schuurman

Textbooks:

Edward Lee and Sanjit Seshia, <u>Introduction to Embedded Systems: A Cyber-Physical Systems Approach</u>, <u>2nd Edition</u>, MIT Press, 2017. Available freely online.

Derek C. Schuurman, <u>An Introductory Guide to Linux and Programming with the Raspberry Pi</u>, 2023-2025. Creative Commons, 2023-2025. Available freely online.

Additional online weekly readings on Moodle will be assigned throughout the semester.

Other Tools: A customized Raspberry Pi IoT kit will be provided by the CS department at a reasonable cost. The kit includes selected components that will be used for weekly lab assignments.

Course organization: In addition to regular lectures there will be a hands-on session each week. Regular lectures will be held on Mondays and Wednesdays and a hands-on session will be held in the Gold Lab (SB354) on Fridays.

Catalog Description

An introduction to topics in embedded systems and the Internet of Things (IoT) including hardware and software considerations for special-purpose computing applications that interact with the physical world. Hardware topics include embedded processors, I/O interfacing, sensors, and actuators. Software topics include scheduling considerations, IoT network protocols, the Web of things, state machines, and embedded programming. Additional topics include discussions of related social and ethical issues such as security, privacy, reliability, and the impact of automation. Lectures will be combined with hands-on lab exercises and a final project.

Prerequisites: Computer Science 112 (which may be taken concurrently) and Engineering 204 or 220, or permission of the instructor.

Student Learning Objectives: Upon successful completion of this course, a student will be able to:

- describe theoretical concepts in embedded systems and the Internet of Things (IoT)
- analyze a problem in embedded systems and IoT and design an appropriate solution
- implement software that applies concepts from embedded systems and IoT
- discuss social and ethical implications related to embedded systems and IoT from a Reformed Christian perspective

Lab Assignments: There will be weekly lab assignments posted in Moodle, most of which will be completed in pairs using kits that are provided. Weekly lab reports must include the names of the lab partners and must be submitted to Moodle by the following Thursday at midnight. Late lab submissions will receive at most 75% full credit and no assignments more than one week late will be accepted. Students may discuss aspects of the assignments with each other, but every group must hand in their own work.

Before attempting any labs, students must read and understand the safety guidelines posted on Moodle.

Quizzes: There will be regular quizzes scattered throughout the semester covering content from lectures, labs, and weekly readings. Quizzes will be comprised of multiple-choice questions, short answers, true/false questions, and definitions. Quiz dates will be posted on Moodle.

Final Project and Presentation: The final project in CS326 is an opportunity for you to showcase what you have learned in this class to solve a problem of interest to you. Final projects will normally be done in pairs, must implement new software features and functionality that is unique from that done in the labs, and must include some form of M2M (machine-to-machine) data communications. Your final project is due on the same day your presentation is made and should be submitted on Moodle as a single PDF file. A final presentation of your project will be scheduled during the last weeks of the course. Your presentation should be clear, using good visuals aids and providing clear answers to questions raised. Note that each group will be given a strict time limit of 10 minutes. Further information along with grading rubrics can be found on Moodle.

Grading: The grading for the course will be weighted as follows:

10%
40%
5%
20%
25%

Grading queries must be raised within one week of the grades being posted and no work will be accepted after the last day of classes.

Course Outline: A tentative schedule for the course is shown below. The weekly reading assignments should be read since not all the material can be covered in detail during lectures.

Week	Text and Readings	Topics	Labs
Week 1	Chapter 1 and sections	Introduction to embedded systems and IoT	Lab 1
Jan. 22,24	8.1, 9.1 in <i>Introduction to</i>	Introduction to the Raspberry Pi hardware and	Introduction and
	Embedded Systems	software	setup of the
		Embedded processors (CPUs), microcontrollers, DSPs, ASICs, FPGAs, GPUs, and NPUs.	Raspberry Pi
Week 2	Chapter 2: "Introduction	Memory architectures; flash memory	Lab 2
Jan.	to Programming	considerations	Programming
27,29,31	Languages" and Chapter	BareMetal or OS: software considerations	the RPi:
	3 section on "Memory" in	Programming the Raspberry Pi	assembly, C,
	Exploring Computer	• Bash shell, assembly language, GNU C/C++,	headless and
	Science with the	Python and Cython overview	remote
	<u>Raspberry Pi</u>	"Headless" remote development	development
Week 3	Chapter 7 in Introduction	General Purpose I/O (GPIO) ports	Lab 3
Feb. 3,5,7	to Embedded Systems	Sensors and actuators: models and examples	Using GPIO pins
		Sensor issues: calibration, non-linearity, noise,	
	" <u>A Guide to De-Bouncing</u> "	and failures	
		Sensor fusion and Marzullo's Algorithm	
Week 4	Section 7.1, 10.1 in	A/D conversion: Quantization, noise, sampling,	Lab 4
Feb.	Introduction to Embedded	resolution	A/D Conversion
10,12,14	<u>Systems</u>	Pulse Width Modulation (PWM)	
		Microservos and actuators	
	How to read a datasheet	Serial data communications: SPI, I ² C, and	
		TIA232	

Week 5	Chapter 3 in Introduction	State machines, state diagrams	Lab 5
Feb.	to Embedded Systems	Reachability analysis, traces	PWMs and
17,19,21		Introduction to Real time operating systems (RTOS)	Servos
Week 6	Sections 16.3, 16.4 in	Real time operating systems (RTOS)	Lab 6
Feb.	Introduction to Embedded	Scheduling and timing analysis for periodic tasks	Scheduling and
24,26,28	<u>Systems</u>	Real Time and Linux; the PREEMPT_RT Patch	Latency.
		Interrupts and latency, WCET and BCET	Patching the
		Rate Monotonic Scheduling (RMS)	Linux Kernel.
		Control systems and digital signal processing	
Week 7	Sections 12.1, 12.2 in	Priority inversion and the Mars Pathfinder	Lab 7
Mar. 3,5,7	Introduction to Embedded	incident	M2M
	<u>Systems</u>	Single Event Upsets (SEU), watchdog timers	Communications
	"The computer errors	Embedded systems product testing: HALT, EMC Introduction to IoT and M2M communications	using MQTT
	<u>"The computer errors</u> from outer space",	CADA framework: Collect, Analyze, Decide, Act	
	BBC.com	Exemplars of IoT for Flourishing	
Mar. 10-14	Spring break		
Week 8	"Introduction to MQTT	Wireless M2M communications: Bluetooth,	Lab 8
Mar.	for IoT" in <u>Exploring</u>	WiFi, 5G, Zigbee, LoRaWAN	Fog computing:
17,19,21	Computer Science with	Introduction to the MQTT protocol	loT with local
17,13,21	the Raspberry Pi	IoT data, SQL, and cloud databases	web server and
			local database
	"SQL Basics"		
Week 9	Intro to the Web of	The Web of Things (WoT)	Lab 9
Mar. 24,28	Things (video)	HTTP and request/response & polling	Cloud
(Advising day:		Polling vs. Publish/Subscribe protocols	computing:
Mar. 26)		MQTT over websockets	IoT with cloud
		Web and database: sensor data visualization	database and
			cloud web serve
Week 10	Intro to Edge AI (video)	IoT and Blockchain	Lab 10
Mar. 31	"Intro to AprilTags"	Big data, IoT data analytics,	Camera sensors,
Apr. 4		Cloud vs. Fog computing	AprilTags, and
No class	"Camera Sensors" in	AloT: Al + IoT and machine learning	the Web of
Apr. 2	Exploring Computer	NPUs and Edge AI	Things (WoT)
	Science with the	Computer Vision at the edge	
Wook 11	<u>Raspberry Pi</u> Section 17.3 in <u>Introduction</u>	LoT socurity issues	Lab 11
Week 11 Apr. 7,9,11	to Embedded Systems	IoT security issues MQTT security: authentication, SSL encryption	Security and
πμι. <i>1,</i> 9,11		Embedded certificates	M2M
Guest	" <u>6 Reasons Why IoT Security</u> <u>Is Terrible</u> " (IEEE Spectrum)	Testing considerations	communications
lecture by		Social and ethical issues: reliability, safety,	
Dr.	"Are You Sure Your Software	sustainability, and humility	
Rocky	Will Not Kill Anyone?" (CACM)	Privacy and security	
, Chang (April	"The Importance of Humility	Normative design principles: IoT for flourishing	
7)	and Humor:	Case studies:	
	Countermeasures against Techno-Foolishness" (excerpt	Therac-25 incident	
	from Habits of the High Tech	VW emissions scandal	
	Heart)	Boeing 737 Max 8 incident	
Week 12-14		Final Project Presentations	Work on final
		Review	project

Laptop policy: Laptops used in lectures must be used strictly for notetaking. Regular "hands-on" practice will be provided in the weekly lab sessions. Furthermore, the use of cell phones is not permitted during classes or labs except when they can be used as part of a lecture or lab.

Academic Honesty

Students are expected to display honesty and responsibility in completing assignments. Students are responsible for understanding the information on plagiarism contained in the Student Conduct Code. For more information, refer to the <u>Calvin plagiarism policy</u>.

Use of Generative AI Tools: Students must write their own code and reports and not rely on using generative AI tools. Students may write code that implements an AI solution for their final project (for example, performing object recognition using the camera).

Accommodations: Calvin University will make reasonable accommodations for persons with documented disabilities. Students should notify a disability coordinator in the <u>Center for Student</u> <u>Success</u> in order to arrange accommodations. Then, come and talk to me within the first two weeks of class so we can put your accommodations in place.

Communication outside of Class Times: Important announcements will be sent via Moodle to Calvin email, so students should check their Calvin email on a regular basis. Generally, the instructor will be happy to help you during lab times, during office hours or whenever I am in my office. The preferred way of communication outside the classroom is through Teams. Tutors are available by contacting the Center for Student Success.

Commitment to Hospitality: It is our intent that students from all backgrounds and perspectives are well served in this course. Join me in creating a class that creates a space where we can ask honest questions and explore important ideas related to various technology issues. If you or someone else is hurt by anything said or done in class, let me know so we can work toward a remedy.