CS300: Special Topics in Computer Science: Embedded Systems and the Internet of Things Calvin University Spring 2020

Course Instructor: Prof. Derek Schuurman

Textbook: Edward Lee and Sanjit Seshia, *Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2nd Edition, MIT Press, 2017. Available online at <u>http://leeseshia.org/</u>.*

Other Tools: A customized Raspberry Pi IoT kit will be provided by the CS department at a reasonable cost. The kit contains parts that will be used for assignments and labs.

Course organization: There will be two lectures and a hands-on session each week. Lectures will be held in NH064 on Mondays and Wednesdays and hands-on sessions will be held in SB354 on Fridays.

Catalog Description

An introduction to topics in embedded systems and the Internet of Things (IoT) including hardware and software considerations for special-purpose computing applications that interact with the physical world. Hardware topics include microcontrollers, I/O interfacing, sensors, and actuators. Software topics include scheduling, considerations, IoT network protocols, the Web of things, state machines, and embedded programming. Additional topics include discussions of related social and ethical issues such as security, privacy, reliability, and the impact of automation. Lectures will be combined with hands-on lab exercises and a final project.

Prerequisites: Computer Science 112 (which may be taken concurrently) and Engineering 204 or 220, or permission of the instructor.

Student Learning Objectives: Upon successful completion of this course, a student will be able to:

- describe theoretical concepts in embedded systems and IoT
- analyze a problem in embedded systems and IoT and design an appropriate solution
- implement software that applies concepts in embedded systems and IoT
- discuss social and ethical implications related to embedded systems and IoT from a Reformed Christian perspective

Labs: There will be weekly labs, some of which will be completed in pairs. Weekly lab reports must clearly indicate the names of the lab partners and will be due by the following Thursday at midnight and must be submitted with Moodle. Labs submitted late will receive at most 75% full credit. No labs more than one week late will be accepted. Links to each lab are available in Moodle. *Before attempting any labs, students must read and understand the safety guidelines posted on Moodle.*

Quizzes: There will be regular quizzes scattered throughout the semester comprised of multiple choice questions, short answers, true/false questions, and definitions. The lowest quiz score will be dropped.

Assignments: There will be several assignments given throughout the semester culminating in a final project and presentation. Assignments and the final project will be done in pairs. Assignments submitted late will receive at most 75% full credit. No assignments which are more than one week late will be accepted (but students ought to still complete all exercises for practice). Students may discuss aspects of the assignments with each other, but every group must hand in their own work.

Grading: The marks for the course will be weighted as follows:

10%
20%
20%
5%
20%
25%

Grading queries must be raised within one week of the grades being posted. No work will be accepted after the last day of classes.

Laptop policy: Laptops used in lectures must be used strictly for note-taking. Regular "hands-on" practice will be provided in the weekly lab sessions. Furthermore, the use of cell phones is not permitted during classes or labs.

Course Outline: A *tentative* schedule for the course is shown below. The weekly reading assignments should be read since not all of the material in each chapter can be covered in detail during lectures.

Week	Text and Readings	Topics	Labs
Week 1	Chapter 1	Introduction to embedded systems and IoT	Lab 1
Feb. 3,5,7	Chapter 8.1, 9.1	Introduction to the Raspberry Pi hardware and software	
		Embedded processors, microcontrollers, DSPs, ASICs,	
		FPGAs	
		Memory architectures; flash memory considerations	
Week 2	Getting Started With	Operating systems and software considerations	Lab 2
Feb. 10,12,14	Bash On The	Programming the Raspberry Pi	
	Raspberry Pi	• Bash shell, assembly language, GNU C/C++ compiler;	
		cross compiling, Python, micro-python, Cython	
Week 3	Chapter 7	General Purpose I/O (GPIO) ports	Lab 3
Feb. 17,19,21		Sensors and actuators: models and examples	
		Sensor issues: calibration, non-linearity, noise, and failures	
		Sensor fusion example: Marzullo's Algorithm	
Week 4	Section 7.1	A/D conversion: Quantization, noise, sampling, resolution	Lab 4
Feb. 24,26,28	Section 10.1	Pulse Width Modulation (PWM)	
		Microservos and actuators	
		SPI, I2C, TIA232 and serial data communications	
Week 5	Chapter 3	State machines, diagrams	Lab 5
Mar. 2,4,6		Reachability analysis, traces	
Week 6	Sections 16.3, 16.4	Scheduling and timing analysis	Lab 6
Mar. 9,11,13		Interrupts and latency	
		Real time operating systems (RTOS)	
Week 7	Sections 12.1, 12.2	Rate Monotonic Scheduling (RMS)	Lab 7
Mar. 16,18,20		Priority inversion and the Mars Pathfinder incident	
		Watchdog timers	
		Introduction to the Internet of Things (IoT)	
Spring Break		No class	No lab
Mar. 23-37			
Week 8	MQTT and CoAP, IoT	IoT and machine-to-machine (M2M) communications	Lab 8
Mar. 30	Protocols	Wireless: Bluetooth, WiFi, 5G, Zigbee, LoRaWAN	
Apr. 1,3		Polling vs Publish/Subscribe protocols	
		CoAP and MQTT Protocols	
		Securing MQTT: SSL and payload encryption	

Week 9		The Web of Things (WoT)	No lab
Apr. 6,8		HTTP and webservers; HTTP request/response and polling	
		MQTT over websockets	
		WebRTC protocol	
Week 10	Short Take: Big Data	Cloud vs. Fog computing	Lab 9
Apr. 15,17	and IoT in Practice	IoT Data and databases	
	(CACM Blog)	Big data, data analytics, machine learning for IoT, TinyML	
Week 11	Chapter 17	Regulatory compliance issues	Lab 10
Apr. 20,24	6 Reasons Why IoT	Security issues:	
Advising	Security Is Terrible	• the problem of default passwords	
week	(IEEE Spectrum)	authentication and encryption	
		software updates	
		Testing considerations	
Week 12	How the Boeing 737	Social and ethical issues: reliability, safety	Work
Apr. 27,29	Max Disaster Looks to	Privacy: California Consumer Privacy Act (CCPA)	on final
May 1	<u>a Software Developer</u>	Big Data, Datafication, and "Dataism"	project
	(IEEE Spectrum)	Normative design principles: IoT for flourishing	
		Case studies: the Therac-25 incident, the VW emissions	
	Engineers, Ethics, and	scandal, the Boeing 737 Max 8 incident	
	the VW Scandal (IEEE		
NV 1 10/14	Spectrum)		NT 1.1
Week 13/14		Final Project Presentations	No labs
May 4, 6, 8,		Keview	
11, 13, 14			

Academic Honesty: Students are expected to display honesty and responsibility in completing assignments. Students are responsible for understanding the information on plagiarism contained in the Student Conduct Code (Article IV. B). For more information, see following statement on plagiarism: https://www.calvin.edu/academic/engl/writing/plagiarism

Accommodations: Calvin University will make reasonable accommodations for persons with documented disabilities. Students should notify a disability coordinator in the Center for Student Success (located in Spoelhof Center 360) in order to arrange accommodations. Then, come and talk to me within the first two weeks of class so we can put your accommodations in place.

Communication outside of Class Times: Important announcements will be sent via Moodle to Calvin email, so students should check their Calvin email on a regular basis. Generally, the instructor will be happy to help you during lab times, during office hours (which are posted on my office door) or whenever I am in my office. Email is the preferred way of communication outside the classroom. Tutors are available by contacting the Center for Student Success.