
Coding-Style and Documentation Requirements

 1

Follow these conventions to make your programs easy for other people to read.

1. Identifiers (names of variables, constants, subprograms, classes, etc.)

• Variables and Parameters. A variable or parameter’s name should be a noun or noun
phrase that describes the value it stores. Avoid using single-letter variable names except
as noted below. Variable names should be all lowercase, except for multiword names:
capitalize the first letter of every word after the first.

Good: radius, diameter, edgeLength, windowWidth, etc.

Poor: r, rad, d, e, w, etc.

Exceptions: Single-letter variable names are permitted as the subscript of an array –
for example, values[i] – and as the loop-control variable in a for loop.

Ambiguous: Abbreviated words, for example, temp. Is it a temporary variable or a
temperature or …? Try to avoid using ambiguous identifiers.

Distinguish instance variables from others using a convention like myLength or _length.

• Constants. Use named constants instead of numeric literals (aka “magic numbers”). Like
a variable, a constant’s name should be a noun or noun phrase describing the value it
stores. To distinguish them from other identifiers, constant names should be all
uppercase, with multiple words separated by underscores.

Good: PI, GRAVITY_FORCE, DEFAULT_WINDOW_HEIGHT, etc.

Poor: f, F, m, M, a, A, etc.

• Functions/Methods. function and method names should be verbs or verb phrases that
describe the action the function performs. Use the same lettering-style as variables; the
parentheses that follow a function’s name will distinguish it from a variable.

Good: run, getRadius, setRadius, calculateArea, etc.

Poor: f, g, radius, area, circumference, area, etc.

• Classes. Use a noun or noun phrase that describes the kinds of objects being modeled.
To distinguish class names from other identifiers, capitalize each word in the name.

Good: Circle, Temperature, PriorityQueue, BinarySearchTree, etc.

Goal: Use descriptive identifiers to make your code as self-documenting as possible.

2. White Space. Even though C++ ignores white space, you should use white space judiciously
to improve the readability of your code.

• Use vertical white space / blank lines to separate chunks of code that are different
logical (i.e., algorithmic) steps within your code.

• Use horizontal white space / indentation to indicate chunks of code that are “inside”
(i.e., controlled by) other lines of code. Indent a minimum of 3 spaces or 1 tab.

See the next section for examples.

Coding-Style and Documentation Requirements

 2

3. Curly-Braces. C-family languages use curly-braces to denote the beginning and end of scope
contexts. There are two conventions for writing curly-braces: Kernighan & Ritchie (K&R) Style
and Aligned Style. You may use either one, but you must be consistent.

K&R Style Aligned Style

if (condition1) {
 statements1
} else if (condition2) {
 statements2
} else {
 statements3
}

if (condition1)
{
 statements1
}
else if (condition2)
{
 statements2
}
else
{
 statements3
}

for (control-expressions) {
 statements
}

for (control-expressions)
{
 statements
}

while (condition) {
 statements
}

while (condition)
{
 statements
}

do {
 statements
} while (condition);

do
{
 statements
}
while (condition);

switch (expression) {
 case constant1:
 statements1
 break;
 case constant2:
 statements2
 break;
 ...
 case default:
 statementsN

}

switch (expression)
{
 case constant1:
 statements1
 break;
 case constant2:
 statements2
 break;
 ...
 case default:
 statementsN
}

int getStatus() {
 statements
}

int getStatus()
{
 statements
}

class List {
 members
};

class List
{
 members
};

Coding-Style and Documentation Requirements

 3

4. Comments. Comments are a key part of program documentation, as they help a human read
your code. C++ supports two basic kinds of comments: block comments that begin with /*
and end with */, and 1-line comments that begin with // and end at the end of the line.
Your programs should include the following kinds of comments:

• Header Comments. Each file you create should begin with a block comment that answers
the 5 “W” questions: Who? What? Where? When? Why?.

Example:
/* List.h contains the declaration of class-template List,
 * a simple, singly-linked list.
 *
 * author Jane Doe
 * why Project 5, CS 112
 * where Calvin University
 * date Spring 2020
 */

• Subprogram Comments. Each subprogram (function or method) you create should be
preceded by a a block comment that describes the purpose and behavior of that
subprogram using its parameters, any preconditions (what must be true in order for the
method to behave correctly?), return value, and any postconditions (things that are true
after the method terminates).

Example:
/* print() traverses a List, outputting each Item to a given ostream.
 *
 * parameter out, the ostream to which we are printing;
 * parameter separator, a string containing the value
 * being used to separate the Items in the List.
 * precondition out is open and << is defined for type Item.
 * return out (modified).
 * postcondition out contains copies of the Items in my dynamic array,
 * with each Item preceded by separator.
 */
ostream& List<Item>::print(ostream& out, const string& separator) const {
 Node * nodePtr = myFirstNodePtr;

 while (nodePtr != nullptr) {
 out << separator << nodePtr->myItem;
 nodePtr = nodePtr->myNextNodePtr;
 }

 return out;
}

One of the reasons for writing header and subprogram comments is that there are tools like
Doxygen and JavaDoc that will use your comments to produce HTML pages that you can
post on the web for people who use your code. To illustrate, online documentation sites like
this C++ Reference, the Java Application Programmer’s Interface (API), and similar websites
were all produced using these kind of tools. If you think you might be a software developer
someday, documenting your code is a good habit to cultivate now.

Coding-Style and Documentation Requirements

 4

• Inline Comments. Inline comments are 1-line comments used within your code to explain
any lines that require explanation or are tricky. If you have used descriptive identifiers, you
should not need too many of these, but don’t hesitate to include them.

Example 1:
bool isOdd(int value) {
 return value % 2; // value%2 == 1 (true) for odd numbers
}

Example 2: The length of a line of code should never exceed 100 characters. If an inline
comment is too long to fit at the end of a line, put the information on the preceding line(s).
bool isOdd(int value) {
 // value%2 == 1 (true) for odd numbers; 0 (false) for even numbers
 return value % 2;
}

Inline comments should always add new information and not just repeat the obvious:

Useless comments:
windowHeight = 400; // set windowHeight to 400
windowWidth = 800; // set windowWidth to 800

Helpful comments:
windowHeight = 400; // reset window dimensions
windowWidth = 800; // to their default values

One guideline for inline comments is that they should not explain what you are doing, but
should explain why you are doing it.

5. Parameter-Passing Modes. A parameter’s declaration should correctly indicate how
information will flow through that parameter, from the caller into or out of the function, as
shown below:

Kind of Type \ Information Flow In Only Out or In+Out

Primitive Type (e.g., char, int,
unsigned, float, double) Pass-by-value Pass-by-reference

Class Type (e.g., string, vector,
list, stack, queue, set, map) Pass-by-const-reference Pass-by-reference

6. Finally.

Graders in each of my courses (CS 112, 214, 374, etc.) will expect you to follow these style &
documentation requirements in any code you submit. The grade sheet for each project
assigns points for style & documentation; if you wish to earn these points, make sure your
code meets these requirements.

