4.3 Example: Volume of a Sphere

Given the radius r, what is the weight of a ball
(sphere) of wound twine?

Object-Centered Design

—display prompt for radius

—read value for radius

—compute weight of sphere

—display results on screen

Note this is generalized for sphere of arbitrary
size

Objects

Objects | Type Kind Name

Program ?2? - ??

Screen Screen varyMg theScreen

Prompt | String |constant none

Radius double | varying radius

Keyboqr‘d Keyboard| varying | theKeyboard

Weight | double | varying weight

Sphere 2? varying ??

Operations

Display a string (prompt) on the
screen

Read a number from keyboard, store it
in radius

Compute weight using radius
Display a number (weight) on screen

New Class Required

Java has no predefined operation for volume
or weight of a sphere

Also no predefined sphere object

Solution:

— build methods to calculate volume & weight

— create a sphere class (module)to store the methods
class Sphere

{

}

We will need an additional variable object
— density (weight = density * volume)

// method definitions

Volume Method — Objects

* Volume = 4xnr3/ 3
* Note
— r is the only variable

— 4, 3, and & are constants

* These (along with the result, volume)
are the objects of this method

Volume Method — Operations and Algorithm

* Receive real value (radius) from caller
Cube the real value (radius3)

Multiply by 4.0 and by &

Divide by 3.0

Returnresult 4.0 * © * radius3/3.0

Defining the Class and Method

Can start with an empty class

class Sphere extends Object
{

}
and add a method stub

class Sphere extends Object
{

public static double volume (double radius)
{

Compiler error — "no return statement" — will
} result. If this is the only error, we know the rest
} is okay. Or we could could add a temporary
"return 0" to method stub to avoid this.

Then code the method's algorithm in the body of the
method:

class Sphere extends Object
{

public static double volume (double radius)
{
return 4.0 * Math.PI *

Math.pow (radius, 3)/3.0;

And test the code with a simple driver like we did for
our ellipse class:

//-- In same directory as the Sphere class
import ann.easyio.*;
class SphereDriver extends Object
{
public static void main(String [] args)
{
Screen theScreen = new Screen() ;
Keyboard theKeyboard = new Keyboard() ;

theScreen.print ("Enter radius of a sphere: ");
double radius = theKeyboard.readDouble () ;

theScreen.println("\nThe volume is " +
Sphere.volume (radius)) ;

Mass Method

* mass = density * volume (radius)
—density and radius are the values
received by the method
—volume is a call to the volume method
-mass is the result to be returned

* These are the objects of the method

Mass Algorithm

* Receive:
—radius
—density

» Multiply density times value returned by
call to volume method

e Return these results

Define the Mass Method

class Sphere extends Object
{

public static double volume (double radius)

t ... 1}

public static double mass
(double radius, double density)
{
return density * volume (radius);
}
}

Algorithm for Main Method

* Construct theKeyboard, theScreen
* theScreen displays prompt for radius

* theKeyboard reads double value into
radius

» theScreen displays prompt for density

* theKeyboard reads a double into density

* Compute weight, using mass () method
from class Sphere

* theScreen displays weight and
descriptive text

Test the Mass Method

//-- In same directory as the Sphere class
import ann.easyio.¥*;

class SphereDriver extends Object
{
public static void main(String [] args)
{
Screen theScreen = new Screen();
Keyboard theKeyboard = new Keyboard() ;

theScreen.print ("Enter radius of a sphere: ");
double radius = theKeyboard.readDouble() ;
theScreen.println("\nThe volume is " +
Sphere.volume (radius)) ;
theScreen.print ("Enter density: ");
double density = theKeyboard.readDouble() ;
theScreen.println("\nThe mass is " +
Sphere.mass (radius, density));

Code and Teste SphereWeigher
Class for Original Problem

* Note source code in Figure 4.5

- Delete import Sphere class;
Put sphere class in same directory as the

client program

- How it uses methods from Sphere class

/** SphereWeigher.java computes the weight of an arbitrary sphere.
* Input: radius and density, both doubles.

* Output: the weight of the sphere.

*/

import ann.easyio.*; // Keyboard, Screen, ...

-

class SphereWeigher extends Object
{
public static void main(String [] args)
{
Screen theScreen = new Screen();
theScreen.print ("\nTo compute the weight of a sphere,"
+ "\n enter its radius (in feet): ");

Keyboard theKeyboard = new Keyboard();
double radius = theKeyboard.readDouble() ;

theScreen.print (" enter its density (in pounds/cubic foot): ");
double density = theKeyboard.readDouble() ;

double weight = Sphere.mass(radius, density);

theScreen.print ("\nThe sphere's weight is approximately ")
.printFormatted (weight) .println(" pounds.");

/** Sphere.java provides a class to represent Sphere objects.
* Contains static methods volume() and mass().

*/

class Sphere extends Object

{

/** Static method to compute sphere's volume

* Receive: radius, a double.

* Precondition: radius > 0

* Return: the volume of a sphere of the given radius
*/

public static double volume (double radius)

{
return 4.0 * Math.PI * Math.pow(radius, 3) / 3.0;

}

/** Static method to compute sphere's volume

* Receive: radius, a double.

* Precondition: radius > 0

* Return: the volume of a sphere of the given radius
*/

public static double mass(double radius, double density)

{

return density * volume(radius);
}
} 17

Sample run:

To compute the weight of a sphere,
enter its radius (in feet): 6.5
enter its density (in pounds/cubic foot): 14.6

The sphere's weight is approximately 16,795.059 pounds.

4.4 Methods: A Summary

» Specify a parameter for each value
received by the method

» Value supplied to the parameter when
method invoked is called an argument

» Arguments matched with parameters
from left to right
—must be same number of arguments
—types must match (be compatible)

« If argument is a reference type, address is
copied to parameter
— both parameter and argument refer to same object
+ Instance (object) methods defined without the
static modifier

— messages invoking them are sent to an instance of
the class

* When methodl () calls method2 (), control
returns to methodl () when method2 ()
finishes

20

* Local objects are defined only while
method containing them is executing

- void is use to specify return type of a
method which returns no values

* Value is returned from a method to the
call using the return statement

21

