
1

Example: O-O Payroll Program
(§11.4)

Object-Oriented Design

Behavior. Our program should read a sequence of
employees from an input file, (managers, secretaries,
programmers, and consultants). It should compute their
pay and print a paycheck for each employee showing the
employee’s name, ID, and pay.

1

Description of

Problem's Object

Type

Kind

Name

Our program

Employee sequence

Input file (stream)

Input file name

Employee

Managers

Secretaries

Programmers

Consultants

Pay

Paycheck

Employee’s name

PayrollGenerator

Employee []

BufferedReader(
FileReader(
fileName))

String

Employee

Manager

Secretary

Programmer

Consultant

double

Paycheck

String

--

varying

varying

varying

varying

varying

varying

varying

varying

varying

varying

varying

--

employee

empFile

args[0]

employee[i]

--

--

--

--

employee[i].pay()

paycheck

employee[i].name()

2

OOD Analysis
Kind of employee Common Attributes
Managers, programmers salary

Create a SalariedEmployee class
Make Manager and Programmer subclasses.

Secretaries, consultants hourly wage, hours
Create an HourlyEmployee class
Make Secretary and Consultant subclasses.

Salaried employee, hourly employees name, ID number,
 pay, etc.

Create an Employee class
Make SalariedEmployee and HourlyEmployee
subclasses.

3 4

Object

Payroll
Generator

Employee
Paycheck

Salaried
Employee

Hourly
Employee

Manager Programmer Consultant Secretary

2

5

Operation Responsibility of

i. Read a sequence of employees PayrollGenerator

from a file
(open a stream to a file,
read an Employee from a stream, Employee, subclasses
close a stream to a file)

ii. Compute an employee’s pay Employee
iii. Construct a paycheck Paycheck
iv. Access an employee’s name Employee
v. Access an employee’s ID number Employee
vi. Access an employee’s pay Employee, subclasses

6

Object

Payroll
Generator
main()

readFile()

Employee
String name()

int id()
double pay()

void read(BufferedReader)

Salaried
Employee

double salary()
double pay()
void read()

Hourly
Employee

double rate()
double hours()
double pay()
void read()

Manager
String division()

void read()

Programmer

String project()
void read()

Secretary
String worksFor()

void read()

String name()
double amount()

int id()

Paycheck

Consultant

7

Number of employees

Employee #1 kind
Employee #1 name
Employee #1 id
Employee #1 salary
Employee #1 division

Employee #2 kind
Employee #2 name
Employee #2 id
Employee #2 wage
Employee #2 hours
Employee #2 works for
 . . .

7

Manager
Grumpy
4
950.00
Javadoc

Secretary
Bashful
1
8.75
40
Grumpy
...

File Format

8

abstract class Employee extends Object {
 //--- Employee constructors ---
 ...
 //--- Accessor methods ---
 ...
 //--- String converter (for output) ---
 ...
 //--- File input ---
 void read(BufferedReader reader) {
 try {
 myName = reader.readLine();
 myID = new Integer(reader.readLine()).intValue();
 }
 catch (Exception error) {
 System.err.println("Employee:read(): " + error);
 System.exit(1);
 }
 }
 //--- Abstract pay method ---
 abstract public double pay();

 //--- Attribute variables ---
 private String myName;
 private int myID;
}

Because an employee’s pay is computed differently for
salaried and hourly employees, we declare an abstract pay()
method in class Employee so that pay() messages can
be sent to an Employee handle.

3

9

class SalariedEmployee extends Employee {

 //--- Constructors ---
 ...
 //--- Accessor methods ---
 public double pay() { return salary(); }
 public double salary() { return mySalary; }
 ...
 //--- String converter (for output) ---
 ...
 //--- File input ---
 ...
 //--- Attribute variables ---
 private double mySalary;
}

But only subclasses SalariedEmployee and
HourlyEmployee will know how to compute their pay,
and so we leave it to them to supply a definition for this
method:

10

class HourlyEmployee extends Employee {
 public final static double OVERTIME_THRESHOLD = 40;
 public final static double OVERTIME_FACTOR = 1.5;

 //--- Constructors ---
 ...
 //--- Accessor methods ---
 ...
 //--- Pay for hourly employee ---
 public double pay() {
 if (myHours <= OVERTIME_THRESHOLD)
 return myHours * myHourlyRate;
 else
 return OVERTIME_THRESHOLD * myHourlyRate +
 (myHours - OVERTIME_THRESHOLD) *
 myHourlyRate * OVERTIME_FACTOR;
 }
 ...
 //--- String converter (for output) ---
 ...
 //--- File input --- }
 ...
 //--- Attribute variables ---
 private double myHourlyRate;
 private double myHours;
}

pay() is defined differently
in SalariedEmployee and
HourlyEmployee.
Polymorphism selects the
correct version.

11

class Manager extends SalariedEmployee
{
 //--- Constructors ---
 ...
 //--- Accessor method ---
 public String division() { return myDivision; }
 ...
 //--- String converter (for output) ---
 ...
 //--- File input ---

 //--- Attribute variable ---
 private String myDivision;
}

The Manager class is defined as a subclass of
SalariedEmployee. Note that although pay() was an
abstract method in the root class Employee, it was defined
in SalariedEmployee, and it is this definition that is
inherited by Manager.

12

class Programmer extends SalariedEmployee
{
 //--- Constructors ---
 ...
 //--- Accessor method ---
 public String project() { return myProject; }
 ...
 //--- File input ---
 ...

 //--- Attribute variable ---
 private String myProject;
}

Similarly, the Programmer class is defined as a subclass of
SalariedEmployee:

And Secretary and Consultant classes are defined as
subclasses of HourlyEmployee and inherit it's methods,
including the pay() method.

4

13

/** Paycheck.java provides a class to model paychecks.
 * New attribute variables store a name, check amount,
 * and ID number.
 * Methods: Constructors: to construct a Paycheck from Employee
 * accessors; to-string converter for output purposes;
 */

import java.text.*; // NumberFormat

class Paycheck extends Object {
 //--- Paycheck constructor ---
 public Paycheck(Employee employee) {
 myName = employee.name();
 myAmount = employee.pay();
 myID = employee.id();
 }

The Paycheck class is designed to model paychecks:

14

 //--- Accessor methods ---
 public String name() { return myName; }
 public double amount() { return myAmount; }
 public int id() { return myID; }

 //--- String converter (for output) ---
 public String toString() {
 NumberFormat cf = NumberFormat.getCurrencyInstance();
 String formattedAmount = cf.format(myAmount);
 return myName + "\t\t" + formattedAmount + "\n" + myID;
 }

 //--- Attribute variables ---
 private String myName;
 private double myAmount;
 private int myID;
}

Note the use of the NumberFormat class method
getCurrencyInstance()to create a number formatter
for monetary values; it is then sent the format() message
along with by the amount to be formatted to produce a
String with the appropriate format.

15

class PayrollGenerator {
public static void main(String [] args) {
 Employee [] employee = readFile(args[0]);

 for (int i = 0; i < employee.length; i++) {
 Paycheck check = new Paycheck(employee[i]);
 System.out.println(check + "\n");
 }

public static Employee [] readFile(String fileName) {
 BufferedReader empFile = null;
 int numberOfEmployees = 0;
 Employee [] result = null;
 try {
 empFile = new BufferedReader(new FileReader(fileName));

 numberOfEmployees =
 new Integer(empFile.readLine()).intValue();
 result = new Employee[numberOfEmployees];

 int i = 0;

Finally, there's the PayrollGenerator class that
calculates wages and prepares paychecks:

16

 String className = "";
 for (;;) {
 String blankLine = empFile.readLine(); // eat blank line
 className = empFile.readLine();

 if (className == null || className == "" // end of stream
 || i == result.length) // end of array
 break;

 result[i] = (Employee)Class.forName(className).newInstance();
 result[i].read(empFile);
 i++;
 }
 empFile.close();
 }
 catch (Exception e) {
 System.err.println(e);
 System.exit(1);
 }

 return result;
}

1 2

5

17

Java has a class named Class that provides various
operations for manipulating classes. Two useful ones are
forName() and newInstance(). If String str is
the name of a class,
 Class.forName(str)
returns a Class object with name str; and

Class.forName(str).newInstance()
returns an instance of the class with this name, created
using the default constructor of that class. It returns that
instance as an Object, and so it must be cast to an
appropriate type, usually the nearest ancestor.
For example,
 (Employee)Class.forName(className).newInstance()

creates an object of type className.

!

18

employees.txt

7
Manager
Grumpy
4
950.00
Java

Secretary
Bashful
1
8.00
45
Happy

Programmer
Happy
5
850.00
Java IDE

Consultant
Doc
2
15.90
20

Programmer
Sneezy
7
850.00
Java Debug

Consultant
Dopey
3
0.50
40

Programmer
Sleepy
6
900.00
Java Threads

java PayrollGenerator employees.txt

Grumpy $950.00
4

Bashful $380.00
1

Happy $850.00
5

Doc $318.00
2

Sneezy $850.00
7

Dopey $20.00
3

Sleepy $900.00
6

Example: Aviary Program
(§11.1)

Some special features of the bird hierarchy:

• The root class Bird along with subclasses
WalkingBird and FlyingBird are abstract classes
with abstract method getCall().

• It uses the getClass() method from class Object.

• It has a random number generator used to select a
random phrase by talking parrots and a random number
of "Hoo"s by a snow owl:

19

import java.util.Random;
 ...
abstract class Bird extends Object {
 ...
 //--- Random number generator ---
 /** Static random integer generator
 * Receive: int upperBound
 * Return: a random int from the range 0..upperBound-1
 */
 protected static int randomInt(int upperBound) {
 return myRandom.nextInt(upperBound);
 }
 //--- Attribute variables ---
 ...
 private static Random myRandom = new Random();
}

20

6

/** SnowOwl.java provides a subclass of Owl that models a
 * snow owl. It provides a constructor and a definition
 * of getCall().
 */

class SnowOwl extends Owl
{
 public SnowOwl() { super("white"); }

 public String getCall() {
 String call = "";
 int randomNumber = randomInt(4) + 1; // 1..4

 for (int count = 1; count <= randomNumber; count++)
 call += "Hoo";

 return call + "!";
 }
}

21

