
Week 9 - Strings and Modules

Model 1 Common String Methods

Like lists, strings have methods (built-in functions) that can be called using dot notation. See
https://docs.python.org/3/library/stdtypes.html#string-methods for more details.

Python code Shell output

dna = 'CTGACGACTT'

dna.lower()

print(dna)

lowercase = dna.lower()

print(lowercase)

dnalist = list(dna)

print(dnalist)

dnalist.reverse()

print(dnalist)

type(dna)

dna = dna.split('A')

print(dna)

type(dna)

dna.replace('C', 'g')

print(dna[0])

type(dna[0])

dna[0].replace('C', 'g')

print(dna)

Questions (15 min) Start time:

1. Does the lower method change the contents of the dna string? Justify your answer.

https://docs.python.org/3/library/stdtypes.html#string-methods


2. Describe the list function—what does list(dna) return in Model 1?

3. Why is it possible to call the replace method on dna[0] but not dna?

4. Name several other string methods not shown in Model 1. (Read the documentation.)

5. Consider the application of a method on a variable:

a) Does a string variable change after applying a method? Provide justification.

b) Does a list variable change after applying a method? Provide justification.

c) Identify the data type that is immutable (i.e., the value never changes).

6. Write a single statement to change the final contents of dna to ['CTG', 'cc', 'CTT']. Con-
firm that your code works in a Python Shell.

7. Why do you think Python has a replace method for strings but not for lists?



Model 2 Random Numbers

You can generate a sequence of numbers using the Python random module. A mathematical
function is used to produce the sequence based on a seed value. (If no seed is given, the current
system time is used.) The sequence is more accurately described as pseudorandom, since its
output is inherently predictable.

Python code Shell output

import randint

import random

randint(1, 10)

random.randint(1, 10)

from random import randint

randint(1, 10)

seed(100)

random.seed(100)

random.random()

random.random()

random.seed(100)

random.random()

random.random()

Questions (20 min) Start time:

8. What is the name of the module that must be imported before generating a random number?

9. Based on Model 2, what are the names of three functions defined in the random module?

10. Identify the syntax of the statement to import:

a) a module

b) a function



11. Identify the syntax of a function call assuming:

a) the module was imported

b) the function was imported

12. How could you eliminate the need for typing the word “random” twice (in a function call)
to generate a random number?

13. Compare the shell output of your team with at least one other team. Describe the similari-
ties and differences observed.

14. What is the effect on the random numbers generated after calling the seed method?

15. Describe one reason to set the same seed each time a program is run, and one reason to not
use the seed method.

16. Run random.random() multiple times. Based on the results, describe:

a) the range of numbers returned by the random function

b) the nature of the distribution of numbers generated. (Do they appear clustered around a
particular value, or are they spread out uniformly over the range?)

17. Run random.randint(1, 10) multiple times. Based on the results, describe:

a) the range of numbers returned by the randint function

b) the nature of the distribution of numbers generated. (Do they appear clustered around a
particular value, or are they spread out uniformly over the range?)



Model 3 Multiple Modules

Create a new file move.py, and enter the code:

1 import random
2

3 def angle():
4 number = random.randint(-90, 90)
5 return number
6

7 print("in move: __name__ ==", __name__)
8 print("will always execute: angle ==", angle())
9

10 if __name__ == "__main__":
11 print("only if True: angle ==", angle())

Run move.py, and record the output below.

Output Line 1

Output Line 2

Output Line 3

Create a new file stop.py (in the same directory), and enter the code:

1 import move
2

3 print("in stop: __name__ ==", __name__)
4 print("from module: angle ==", move.angle())

Run stop.py, and record the output below. Draw an arrow from each line of output to its
corresponding print statement in the code.

Output Line 1

Output Line 2

Output Line 3

Output Line 4



Questions (15 min) Start time:

18. Upon execution of move.py:

a) what is the value of the variable __name__?

b) does the output correspond solely to the print statements contained in this file?

19. Upon execution of stop.py:

a) what is the value of the variable __name__ from the print statement in move

b) what is the value of the variable __name__ from the print statement in stop

c) does the output correspond solely to the print statements contained in this file?

20. What was the reason to include the import move statement in stop.py?

21. Based on the output of stop.py, describe what happens (as a side effect) when another
module is imported.

22. What line in move.py did not print when stop.py was executed? Why?

23. In order for the output of stop.py to correspond solely to the print statements contained in
stop.py, what modifications need to be made to move.py?

24. Describe what code in general to include inside if __name__ == "__main__", and why.


	Common String Methods
	Random Numbers
	Multiple Modules

