Model 1 Working with Lists

Recall that a variable can hold multiple values in the form of a list. The values are separated by commas and wrapped in square brackets.

Lists have *methods* (built-in functions) that can be called using dot notation. For example, to add a new element to the end of a list, we can use the append method.

Python code	Shell output
rolls = [4, 6, 6, 2, 6]	
len(rolls)	
<pre>print(rolls[5])</pre>	
rolls.append(1)	
<pre>print(rolls)</pre>	
<pre>print(rolls[5])</pre>	
lucky.append(1)	
lucky = []	
<pre>print(lucky[0])</pre>	
lucky.append(5)	
<pre>print(lucky)</pre>	
<pre>print(lucky[0])</pre>	
rolls.count(6)	
rolls.remove(6)	
print(rolls)	
help(rolls.remove)	
help(rolls)	

Questions (15 min)

Start time:

- 1. What is the result of calling the append method on a list?
- 2. What must be defined prior to using a method like append?

3. Explain why two lines in Model 1 caused an IndexError.
4. What is the result of calling the remove method on a list?
5 . Based on the help output, name several list methods not shown in Model 1. Do not include methods that begin and end with two underscores (e.g.,add).
6 . Give one example of a list method that requires an argument and one that does not.
7. Describe the similarities and differences between using a list method like append and Python built-in functions like print.
8. Complete the function below (two lines are missing). It should prompt the user for numbers and build a list by adding one number at a time to the end of the list. The loop terminates when the user inputs the number 0.
<pre>def input_numbers(): x = 1</pre>
<pre>while x != 0: x = int(input("Enter the next number: "))</pre>
return numbers

Model 2 Indexing and Slicing

A string is a sequence of characters in single quotes (') or double quotes ("). Depending on the application, we can treat a string as a single value (e.g., dna), or we can access individual characters using square brackets (e.g., dna[0]). We can also use *slice notation* (e.g., dna[4:8]) to refer to a range of characters. In fact, all types of sequences (including list and tuple) support indexing and slicing.

Python code	Shell output
dna = 'CTGACGACTT'	
dna[5]	
dna[10]	
len(dna)	
dna[:5]	
dna[5:]	
dna[5:10]	
triplet = dna[2:5]	
print(triplet)	
dna[-5]	
dna[-10]	
dna[:-5]	
dna[-5:]	
triplet = dna[-4:-1]	
print(triplet)	

Questions	(15	min)
-----------	-----	------

Start time:

9. What is the *positive* index of each character in the dna string? Check your answers above.

Character: C T G A C G A C T T

Index:

10. What is the *negative* index of each character in the dna string? Check your answers above.

Character: C T G A C G A C T T

Index:

11. Based on the previous questions, what are dna[2] and dna[-2]? Explain your answers.
12 . Explain the IndexError you observed. What is the range of indexes for the dna string?
13. Consider the notation of the operator [m:n] for slicing the string.
a) Is the value at the start of the resulting string the same as the value at index m (i.e., dna[m])? If not, describe what it is.
b) Is the value at the end of the resulting string the same as the value at index n (i.e., dna[n])? If not, describe what it is.
c) Explain what it means when only a single number is referenced when creating a slice, such as [m:] or [:n].
14 . What is the simplest way to get the first three characters of dna? What is the simplest way to get the last three characters?
15 . Write a Python expression that slices 'GACT' from dna using positive indexes. Then write another expression that slices the same string using negative indexes.
16 . Write a Python assignment statement that uses the len function to assign the last letter of dna to the variable last.
17. Write a Python assignment statement that uses a negative index to assign the last letter of dna to the variable last.

Model 3 Lists of Lists

Connect Four (® Hasbro, Inc.) is a two-player game in which the players take turns dropping colored discs into a six-row by seven-column grid. The objective of the game is to be the first player to form a horizontal, vertical, or diagonal line of four of one's own discs. (paraphrased from https://en.wikipedia.org/wiki/Connect_Four)

Enter the grid code above into a Python Shell, and run each line of the table below. If the output is longer than one line, summarize it with a few words.

Python code	Shell output
print(grid)	
<pre>print(grid[5])</pre>	
print(grid[5][0])	
type(grid)	
type(grid[5])	
type(grid[5][0])	
len(grid)	
len(grid[5])	
len(grid[5][0])	
import pprint	
help(pprint)	
pprint.pprint(grid)	
<pre>for item in grid: print(item)</pre>	
<pre>for i in range(len(grid)): print(grid[i])</pre>	

- **18**. What does grid look like when you first print it? (How is the output different from the original format shown in Model 3?)
- 19. What does grid look like when you use pprint instead? Explain what pprint means.
- 20. When viewed as a rectangle, how many "rows" and "columns" does grid have?
- 21. What type of object is grid? What type of objects does it contain?
- 22. What type of object is grid[5]? What type of objects does it contain?
- **23**. In the expression grid[5][0], which index corresponds to the row, and which index corresponds to the column?
- **24**. Is grid a list of rows or a list of columns? Justify your answer.

- 25. Describe how to append one more row to grid.
- **26**. What is necessary to append a "column" to grid?

Model 4 Nested Dictionaries

Containers can be nested in arbitrary ways. For example, the following data could be described as a "dictionary of dictionaries of integers and lists of strings".

Enter the following code into a Python Shell, and complete the table. If the output is longer than one line, summarize it with a few words.

```
movies = {
    "Casablanca": {
        "year": 1942,
        "genres": ["Drama", "Romance", "War"],
    },
    "Star Wars": {
        "year": 1977,
        "genres": ["Action", "Adventure", "Fantasy"],
    },
    "Groundhog Day": {
        "year": 1993,
        "genres": ["Comedy", "Fantasy", "Romance"],
    },
}
```

Questions (15 min)

Start time:

- **27**. Explain the TypeError you encountered.
- **28**. In the expression movies ["Casablanca"] ["genres"], describe the purpose of the strings "Casablanca" and "genres".

Python code	Shell output
movies	
movies["Casablanca"]	
movies["Casablanca"]["year"]	
movies["Casablanca"]["genres"]	
type(movies)	
<pre>type(movies["Casablanca"])</pre>	
<pre>type(movies["Casablanca"]["year"])</pre>	
<pre>type(movies["Casablanca"]["genres"])</pre>	
len(movies)	
len(movies["Casablanca"])	
len(movies["Casablanca"]["year"])	
len(movies["Casablanca"]["genres"])	
for key in movies: print(key)	
<pre>for key, val in movies.items(): print(key, val)</pre>	

- **29**. When iterating a dictionary using a for loop (i.e., for x in movies), what gets assigned to the variable?
- **30**. What is wrong with the following code that attempts to print each movie?

```
for i in range(len(movies)):
    print(movies[i])
```

31. Write nested loops that output every *genre* found under the movies dictionary. You should have nine total lines of output.

32. Each movie in Model 4 has a title, a year, and three genres.

- a) Is it necessary that all movies have the same format?
- b) Name one advantage of storing data in the same format:
- c) Show how you would represent The LEGO Movie (2014) with a runtime of 100 min and the plot keywords "construction worker" and "good cop bad cop".