
9-1 

 

Chapter 9.   Introduction to Classes 

In preceding chapters, we have modeled increasingly complex phenomena. We started with simple 

geometric figures and moved on to more complex objects like moving balls, functions and statistical data. 

While the basic types and control structures covered in the previous chapters are sufficient to support 

models of a wide variety of object types, the complexity of our programs is starting to grow beyond our 

ability to keep track of everything. Increasingly realistic programs become very complex very quickly. 

One abstraction that programmers use to help address this complexity is the concept of a class. This 

chapter introduces the design and implementation of classes in Processing and Java. 

9.1. Example: Pinball Game 

Video games commonly involve interacting objects of various 

kinds. Even a simple game like Pac-Man has an agent, ghosts, 

power pellets and bonus items. The programming task of 

representing, presenting and maintaining all of these objects is 

daunting, and its difficulty increases as the number and 

complexity of the objects increases.  Programmers can address 

this complexity by adopting an object-oriented perspective in 

which they design and implement models of sets of objects that 

encapsulate shared states and behaviors. 

In this chapter, our vision is to build a simple pinball video game 

like the one shown in Figure 9-1. This game expects the player to 

move the paddle, shown on the bottom, from side to side using the 

mouse pointer. A single white ball shoots up from the bottom 

right of the display window and bounces off the walls, the 

stationary, colored targets and the paddle. If it falls to the bottom 

without hitting the paddle, it falls into oblivion. We’d like to have 

a single paddle and multiple targets. Implementing a game such as 

this requires that the application model all the elements of the 

following objects: 

 The moving ball; 

 The stationary target balls; 

 The movable paddle. 

Each of these types of objects must encapsulate its own state and behaviors: 

   

Figure 9-1. A pinball game sketch 
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 The ball’s state is characterized by its a current location, velocity, acceleration, size and color; its 

behaviors must include movement and collision (with the targets, the paddle, the walls and 

ceiling); 

 The targets are similar to the moving ball except that they have no velocity or acceleration; 

 The paddle’s state is characterized by its current location, size and color; 

We could implement all of these aspects of the game objects using techniques discussed in previous 

chapters, but object-oriented programming languages like Processing and Java provide a class mechanism 

that helps to address the complexity of these systems. 

9.2. Class Design 

Classes are the central element of a paradigm of computing known as object-oriented programming. They 

allow programmers to encapsulate all the elements related to a particular type of object within a single 

programming construct called a class. Programs that model complex phenomena, for example the 

interactions between the objects in a video game such as the one shown in Figure 9-1, can sub-divide their 

work into simpler pieces by implementing one class for each type of object.  

9.2.1. Working with Objects 

The world is filled with objects. The set of all objects includes a wide variety of individual objects where 

each object has a certain state and set of behaviors that make it unique. We can observe, however, that 

there are sub-sets of these objects that share certain common properties. These sub-sets are often called 

“classes.” Examples include the following: 

 We divide students into classes. For example, the “freshman”, “sophomore”, “junior” and 

“senior” classes characterize students at different levels of schooling. Individual students in each 

class share certain traits, such as a maximum number of total credit hours, but also have 

individual characteristics that make them unique, such as their individual name and student id 

number; 

 

 The U.S. Navy describes ships as belonging to certain classes. For example, the “Skipjack”, 

“Thresher”, and “Sturgeon” classes characterize different kinds of submarines.  Individual 

submarines in each class share certain traits, such as a common weight displacement, but also 

have unique individual characteristics, such as their name and current location. 

Used in this way, the word class is a synonym for the word type, because it provides a name for a set of 

related objects.  

Because programs model the world, they must represent objects. Programmers, therefore, face the same 

issue of complexity that people face in real life, and they address this complexity in the same manner as 

people do, by dividing the objects being modeled into sub-sets. Programming languages provide types to 

represent these sub-sets. If the model only includes simple objects like strings or numbers, then primitive 

types are sufficient to build the program. However, most programs model more complex objects that 

cannot be directly represented with primitive types. For example, even a simple point object requires both 
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an x and a y coordinate, and a more complex video game agent like the Pac-Man ghost requires much 

more (i.e., a name, color, location, shape, etc.). 

Object-oriented programming languages allow programmers to define new types for the programming 

language by designing and building classes. Classes can be viewed as blueprints for constructing objects. 

These blueprints specify how to represent both the state of the object and the behavior of that object. 

Programmers use classes to extend the type system of the language in order to support more complex 

objects. This section discusses the design of classes in Java. Later sections discuss the implementation of 

classes. 

9.2.2. Designing Class Attributes and Behaviors 

Designing a class requires that we identify: 

 class attributes – the data that must be stored in order to characterize the state of a class object; 

 class behavior – the operations that a class object can perform. 

The behavior of a class is usually identified first, because often the attributes of the class are not obvious 

and because identifying the class behavior can sometimes clarify the nature of the attributes.  Also, if the 

behaviors are identified before any of the attribute details are established, they will remain independent of 

the details of how the attributes are implemented.  This independence from implementation details is an 

important principle of good class design. To encourage this independence, it is helpful to distinguish two 

perspectives when designing classes: 

 When we used pre-existing types in previous chapters, we tended to adopt an external perspective 

with respect to the types. For example, when we built and used arrays, we didn’t much care how 

Java represented the array data structure so long as it supported the state memory and behaviors 

that we expect from arrays, e.g., the storage of multiple values of a common type, the length 

variable, the constructor (i.e., new) method and the subscript operator.  When designing a new 

class, it is good to start by thinking from an external perspective about what state and behaviors 

the objects of that class should support. 

 

 When we design our own types using classes, we must adopt an internal perspective. The internal 

perspective requires that we, as designers of the class, carefully consider not only the features that 

our class must provide but also precisely how we will implement those features. When the 

external perspective of the class is determined, we begin thinking from an internal perspective 

about how to design the internals of the class definition. It is frequently helpful to visualize 

ourselves as an object of the class we are defining and ask ourselves “What would I, as an object 

of this class, need to implement my required state and behavior?” 

Consider the example of designing a class that implements a temperature. Scientific applications often 

represent and work with many different temperatures, all of which must be implemented consistently in a 

manner that allows them to be set to particular values, to specify particular scales (e.g., Celsius, 

Fahrenheit and Kelvin), to be translated from one scale to another and to be compared with one another. 

Java provides predefined types for representing floating-point values for the degrees of the temperature, 

but it doesn’t provide any means for bundling the degrees, the scale and the behavior of even this rather 
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unassuming temperature object. This bundling is important. For example, determining whether 40 is hot 

or cold depends very much on the scale in which it is specified; 40 Fahrenheit is relatively cold; 40 

Celsius (104 Fahrenheit) is hot; 40 Kelvin (-387.6 Fahrenheit)  is unspeakably cold. 

From the external perspective, a programmer would expect a temperature object to support the following 

behaviors:  

 Construct – Create a new temperature object; 

 Change – Raise or lower the value of the temperature object;  

 Convert – Convert a temperature in one scale to an equivalent temperature in another scale; 

 Compare – Compare the value of one temperature object with another.  

This external perspective defines the programmer’s interface to the class, often called the Application 

Programmer’s Interface (API). It doesn’t say anything about how to implement these behaviors; 

programmers creating and using temperature objects should not have to know about these things any 

more than they should know how a String or PImage object implements its behaviors internally. 

Because we are designing this temperature class ourselves, we must now switch to the internal 

perspective. From this perspective, I, as a temperature object, need to include all those attributes and 

methods required to implement the state and behaviors required by my API. Thus, I must implement the 

following attributes: 

 Degrees – my magnitude; 

 Scale – the scale in which my magnitude is specified.  

 

The need for other attributes may become evident later in the implementation of the temperature class, but 

these attributes are good place to start.  

9.2.3. Example Revisited 

Consider the example of designing a class that implements a stationary 

ball object that renders itself on the display window. This is a simplified 

version of the stationary target balls shown in our original pinball game 

sketch shown in Figure 9-1. We would like our user to see each ball as a 

colored circle, as shown in Figure Figure 9-2.  From the external 

perspective, a ball object should support the following behaviors:  

 Constructor – Create a new ball object; 

 Render – Draw the object as an ellipse based on its current state.  

From the internal perspective. a ball object should implement the 

following attributes: 

 Coordinates – my x and y coordinates; 

 Dimensions – the diameter of my circle; 

 Color – my color.  

Figure 9-2. A sketch of two 

stationary ball objects 



9-5 

 

The class invariant that must be explicitly enforced for this application is simply that the diameter of the 

circle must be non-negative.  

9.3. Class Implementation 

In Java, classes are implemented using the following pattern. 

 

 

 

 

 

 

 

 

Class definitions are said to encapsulate attributes and methods in that they combine all the attributes and 

the methods into a single programming construct, the class definition. Classes can be viewed as blueprints 

for class objects that programmers can use to construct multiple objects of that same type as required by 

their application. 

In Java, new classes are implemented in separate files where the filename matches the name of class. For 

example, a new Temperature class would be stored in the file Temperature.java. In Processing, 

new classes are implemented by adding a new .pde file for each class. The Processing IDE allows you to 

add a new class by adding a new editing tab to the IDE and it stores the new file in the same sketch 

directory as the main sketch pde file. 

9.3.1. Implementing Class Attributes 

Given a class design, our first task is to implement the class’s attributes.  For attributes that change over 

time or that differ from one object to another, we must define variables. Attributes that are the same for 

all objects and do not change can be represented as constants (or as methods that return a literal). The 

values of the attributes determine the state of a class object at a particular time. 

For our temperature class, the attributes, degrees and scale, can differ from one temperature object to 

another and should therefore be stored in variables: 

double myDegrees; 

char myScale; 

These will become the attributes — also called instance variables — of our temperature class.  We give 

the names of attribute variables the prefix my to help indicate that they are attributes of the class and to 

class ClassName { 

  attributeDeclarations 

  methodDefinitions 

} 

 ClassName is the name of the new reference type being defined; 

 attributeDeclarations declare the variables (and constants) required to store 

the state of the objects defined by the class, using standard variable (and constant) 

declaration patterns; 

 methodDefinitions define the methods required to implement the behavior of 

the objects defined by the class, using the standard method definition pattern. 

 

 

Class Definition Pattern 
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reflect our internal perspective. As with all identifiers, the name of an attribute variable or constant should 

be self-documenting, describing the attribute being stored.   

Encapsulating Attributes 

Once we have defined fields to represent the attributes of our class, we can actually create the class by 

wrapping these objects in a class declaration: 

class Temperature { 

  double myDegrees; 

char myScale; 

} 

This declaration creates a new type named Temperature.  Because classes are reference types, we 

declare their objects using the new operator followed by a Temperature constructor.  Given the 

following declarations: 

    Temperature temperature1 = new Temperature(), 

                temperature2 = new Temperature(); 

temperature1 and temperature2 refer to distinct Temperature objects where each object 

contains two attributes: a  double variable named myDegrees and a char variable named myScale. 

We can picture these newly-constructed objects as follows: 

 

Wrapping the attribute variables in a class declaration and then using that class as a type to declare an 

object makes it possible for an object to store values of different types.  In the vocabulary of 

programming languages, we say that class Temperature encapsulates the attribute variables 

myDegrees and myScale.  Such encapsulation allows a single object to store multiple values of 

potentially different types. 

Supporting Information Hiding 

As the attribute variables of a Temperature object are currently declared, they can be accessed 

directly, as is also the case with an array object’s length value (e.g., myArray.length).  For example, 

the main() method of the application can check the value of tempuerature1's degrees: 

if (temperature1.myScale == 'C') // ... 

This is problematic, however, because there is nothing protecting an attribute from being accidentally 

modified.  For example, a programmer might assign an inappropriate value to the diameter, 

temperature1.myScale = 'X'; 

The result would be an invalid Temperature object.  

Such problems can be prevented by declaring the attribute variables to be private: 
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class Temperature { 

 private double myDegrees; 

 private char myScale; 

} 

 

This prevents direct access to the attribute variables from outside the class declaration. The default 

protection for attributes is public. 

This fundamental concept of class design is called information hiding.  By preventing a program from 

directly accessing the private data members of a class, we hide that information, thus removing the 

temptation to access the data members directly and preventing potential problems. It is a good practice to 

hide all attribute variables of a class by making them private. 

Once we have the attribute variables encapsulated and hidden, we are almost ready to begin implementing 

the class operations. 

Enforcing Class Invariants 

Before defining class operations, we should identify any restrictions on the values of the attributes of our 

class.  For example, we might stipulate that the only valid values for attribute variables myScale are 

'C', 'F' or 'K'. Similarly, we might stipulate that the combination of values of myDegrees and 

myScale should never be below absolute zero (i.e., 0 Kelvin). If we identify such restrictions at the 

outset, then we can implement the various class operations in a way that ensures that these restrictions are 

enforced. 

Once we have such a condition, we want to make certain that none of the code we write for this class 

violates it — that is, we want the condition to be true, both before and after each call of a class operation.  

Because this condition must be true throughout the life of all class objects, it is called a class invariant.  

When such an invariant is defined, it is good practice to record it in the documentation at the beginning of 

the class file and to implement measures ensuring that it is maintained. 

/** 
   * This class implements a standard temperature object. 
   *  

 * Temperature class invariant:  
 * myScale == 'C' && myDegrees >= ABSOLUTE_ZERO_CELSIUS ||  
 * myScale == 'F' && myDegrees >= ABSOLUTE_ZERO_FAHRENHEIT ||  
 * myScale == 'K' && myDegrees >= ABSOLUTE_ZERO_KELVIN 
 *  
 * @author kvlinden 
 * @version Spring, 2012 (based on the original ANN implementation) 
 */ 
class Temperature { 

 public final static double ABSOLUTE_ZERO_CELSIUS = -273.15,  

                                 ABSOLUTE_ZERO_FAHRENHEIT = -459.67, 

                ABSOLUTE_ZERO_KELVIN = 0.0; 

 private double myDegrees; 

 private char myScale; 

} 

We will enforce this invariant in our implementation. 
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Since our class invariant relies on the values of absolute zero in each of the different scales, we define 

constants for all three.  Because these constants are likely to be generally useful to temperature-related 

programs, we define them as public constants so they are accessible both inside and outside the class 

declaration. 

Static vs. Instance Constants 

Note also that since the values of these constants will be the same for all temperature objects, we use the 

static modifier to define them as class constants (or static constants) rather than instance constants.  This 

means that all temperature objects share these class constants rather than carrying around their own copies 

of them, as would be the case if they were instance constants. This can be visualized as shown in this 

diagram: 

 

Here, the three constant values are represented once and shared by all temperature objects. Given that 

these absolute zero values are constants, it makes little sense for each temperature object to represent its 

own duplicate copies. For this reason, most constants should be declared as static constants. 

Class constants are accessed through the class rather than through an instance of that class (i.e., an 

object); for example,  

 Temperature.ABSOLUTE_ZERO_CELSIUS 

retrieves the value –273.15, where the identifier on the left-hand side of the dot is the temperature class 

rather than any of the individual temperature objects (e.g., temperature1). Useful constants are often 

provided by libraries of static constants, e.g., the Math library provides Math.PI and Math.E  

Variables can also be declared as static and thus shared by all class objects, but this is far less 

common than the use of static constants. Most variables store values that are unique to each individual 

class object, e.g., myDegrees and myScale, and thus should be declared as instance variables rather 

than class variables. 
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9.3.2. Implementing Class Behaviors 

Once the class attributes have been implemented, we are ready to begin writing methods that implement 

the class behaviors.  Class methods generally fall into one of the following categories: 

 Constructors – Methods that initialize attribute variables 

 Accessors – Methods that retrieve but do not change attribute values 

 Mutators – Methods that change attribute variable values 

 Converters – Methods that provide a representation of an object in a different type 

 Other Utilities – Methods used by other methods to simplify or avoid redundant coding 

In this section, we will see examples of each of these categories of methods. 

The toString() Method 

It is good practice to define methods for output early in the implementation process, because being able to 

view an object’s value can help with checking the correctness of the other operations.  For this reason we 

will begin by building an output method for our Temperature class. 

In Java, the print() and println() methods can be used to display any value whose type is 

Object or any class that extends Object.  These methods work by asking an object to convert itself to 

a String using its toString() method and then displaying the string returned by that object.  Various 

other operations (e.g., the string concatenation operator +) also use toString() messages to convert 

objects to strings so they can be processed.  For these reasons, most classes should provide a 

toString() method.  The existing print() and println() methods can then be used to display 

objects of that class without further work. 

As its name suggests, the toString() method is a converter method.  From an external perspective, an 

expression such as 

temperature1.toString() 

should return a string containing the degrees and scale attributes of the temperature object to which 

temperature1 refers.   

From an internal perspective, when I (a temperature object) receive a call to my toString() method, I 

should respond by returning a String containing the values stored in myDegrees and myScale, with a  

space separating them. Thus, we can implement the behavior of toString() as follows: 

 public String toString() { 

  return myDegrees + " " + myScale; 

 } 

Note that although a method from a different class is not permitted to access the private attribute variables 

of a class, a method defined within the same class can access them freely.  

Because the print() and println() methods send the toString() message to any object they 

are asked to display.  A statement like 
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 System.out.print(temperature1); 

therefore, will (behind the scenes) send temp1 the toString() message to obtain a String 

representation of temperature1 and display the result.  For the toString() method just shown, the 

output produced by the above statement will be value of temperature1.myDegrees followed by a 

space and the value of temperature1.myScale.  Similarly, 

 System.out.print(temperature2); 

will display the value of temperature2.myDegrees, a space, and the value of 

temperature2.myScale.   

Before this method is useful, however, the attribute variables myDegrees and myScale must have 

values.  We therefore turn our attention to methods that enable attribute variables to be initialized. 

Default Constructors 

Java allows a class to define methods whose purpose is to initialize the attribute variables of its objects.  

These special methods are called constructors.  A constructor that initializes the attribute variables to 

default values is called a default-value constructor, while a constructor that initializes the attribute 

variables to user-supplied values is called an explicit-value constructor. 

As a temperature object, I must be able to initialize my attribute variables when I am created.  The 

following example shows the definition of a default-value constructor for the Temperature class.   

 public Temperature() { 

  myDegrees = 0; 

  myScale = 'C'; 

 } 

Though this constructor looks very much like a normal instance method, we see some unusual features:  

 There is no return type between public and the method’s name. This is because constructor 

methods have no return type, not even void.  As an initialization method, a constructor never 

returns anything to its caller.  Its sole purpose is to initialize an object’s attribute variables.   

 The constructor has the same name as the class's name.  This allows Java to determine that this 

method defines a constructor.   

 Though not so unusual, the constructors must always be marked as public because 

programmers wanting to construct new Temperature objects must be able to access the 

constructor. 

Note that because we can control the values that are assigned to myDegrees and myScale, we can 

ensure that they match the class invariant specified above. 

Given this definition, a programmer can now write the following console application to test this much of 

the class: 
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Code: 
public static void main(String[] args) { 

Temperature temperature1 = new Temperature(); 

 System.out.println(temperature1); 

} 

 

Output: 
  0.0 C 

 

When the first statement of this program is executed, the temperature class constructor will construct a 

new Temperature object called temperature1, which can be viewed as follows: 

 

This object is produced because whenever Java encounters the expression 

new Temperature() 

it finds the Temperature class and searches for a Temperature() constructor that it can use to 

initialize the newly-created object. Upon finding one, it invokes that constructor method to initialize the 

object.
1
  A constructor is called by the compiler whenever a class object is defined using the new 

operator.  For this reason, always provide one or more constructors when building a class to initialize its 

attribute variables.
2
 

Explicit-Value Constructors 

The constructor method we just defined only allows us to initialize a Temperature object that has 

default values for its degrees and scale.  It would also be useful to allow initializations of other non-

default Temperature objects.  This can be accomplished by defining a second Temperature 

constructor that receives the initial values via its parameters. The algorithm for this method is as follows: 

Algorithm: 

1. Receive degrees, a double, and scale, a char. 

2. If degrees and scale specify a temperature that satisfies the class invariant, then: 

a. Set myDegrees = degrees. 

b. Set myScale = scale. 

otherwise: 

a. Print an error message and terminate the program. 

Note that this algorithm has to be careful to check the values of the parameters supplied by the calling 

program to ensure that they specify a legal temperature. The scale must specify a legal system, i.e., ‘f’, 

‘F’, ‘c’, ‘C’, ‘k’, or ‘K’ and the degrees must specify a temperature above absolute zero in the given scale. 

                                                      
1
 If Java does not find such a method and the class has no other constructors, the compiler will generate a default 

constructor and use it to initialize the attribute variables with the Java-specified default values. 
2
 Static libraries like the Math library discussed in the previous section are not instantiated using new. 



9-12 

 

The following example shows the definition of an explicit-value constructor for the Temperature 

class.   

public Temperature(double degrees, char scale) { 

 if (isValidTemperature(degrees, scale)) { 

  myDegrees = degrees; 

  myScale = Character.toUpperCase(scale); 

 } else { 

  System.err.println("Invalid Temperature: (" + degrees + ","  

  + scale + ")"); 

  System.exit(-1); 

 } 

} 

This code uses a new method isValidTemperature() to validate the supplied degrees and scale 

before initializing the local instance variables. This protects temperature objects from getting bad data. 

This new method is discussed in detail in a later section. It also automatically converts lower cases values 

for ‘c’, ‘f’ and ‘k’ into uppercase values; this helps to ensure conformity to the class invariant, which only 

allows upper case values. If the degrees and scale do not specify a legal temperature, then this method 

prints an error message to System.err, the output stream designated for printing error messages and 

terminates the program using System.exit(). 

Given this definition, a programmer can write a console application to test this much of the class: 

Code: 
 public static void main(String[] args) { 
  Temperature temperature1 = new Temperature(); 
  System.out.println(temperature1); 
  Temperature temperature2 = new Temperature(98.6, 'f'); 
  System.out.println(temperature2); 
 } 

Output: 
 0.0 C 
  98.6 F 

This program constructs two new temperature objects. The first, temperature1, is constructed by the 

temperature class’s default constructor and the second, temperature2, is constructed by the 

temperature class’s explicit value constructor. The result can be viewed as follows: 

 

Overloading Method Names 

Having two different methods with the same name is known as overloading.  Given  the expression 

 new Temperature() 

Java searches the Temperature class for a constructor method named Temperature that has no 

parameters.  On finding one, it uses that constructor to perform the initialization.   
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By contrast, when Java encounters the expression 

 new Temperature(98.6, 'f') 

it searches the class for a method named Temperature whose signature (i.e., name and ordered list of 

parameter types) matches the ordered list of argument types.  On finding it, Java uses that constructor to 

perform the initialization. 

More generally, a declaration statement of the form 

ClassName variableName = new ClassName(argumentList);  

causes the compiler to search the definition of class ClassName for a constructor whose parameter types 

match the types of the arguments in argumentList.  If it finds such a constructor, it uses it to perform 

the initialization.  If it finds no constructors, it automatically generates a default constructor. 

Utility Methods 

Classes often implement utility methods, which provide useful functions deployed throughout the class 

definition. The isValidTemperature() method introduced above is such a method. It must 

determine if a given degrees/scale pair specifies a temperature that satisfies the class invariant, that is that 

the scale be Celsius, Fahrenheit or Kelvin and that the degrees value be at or above absolute zero.  

Algorithm: 

1. Receive degrees, a double, and scale, a char. 

2. If scale specifies Celsius, then: 

a. Return the value of (myDegrees >= absolute zero) in Celsius. 

otherwise if scale specifies Fahrenheit, then: 

a. Return the value of (myDegrees >= absolute zero) in Fahrenheit. 

otherwise if scale specifies Kelvin, then: 

a. Return the value of (myDegrees >= absolute zero) in Kelvin. 

otherwise  

a. Return false. 

To ensure that the degrees and scale values received from the calling program satisfy the class invariant, 

this algorithm must verify that the scale is legal (Celsius, Fahrenheit or Kelvin) and carefully distinguish 

the degrees values of absolute zero for Celsius (-273.15), Fahrenheit (-459.67) and Kelvin (0.0). This 

algorithm can be implemented as follows: 

 public static boolean isValidTemperature(double degrees, char scale) { 

  if (Character.toUpperCase(scale) == 'C') { 

   return degrees >= ABSOLUTE_ZERO_CELSIUS; 

  } else if (Character.toUpperCase(scale) == 'F') { 

   return degrees >= ABSOLUTE_ZERO_FAHRENHEIT; 

  } else if (Character.toUpperCase(scale) == 'K') { 

   return degrees >= ABSOLUTE_ZERO_KELVIN; 

  } else { 

   return false; 

  } 

 } 
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This implementation automatically converts the scale value received from the calling program into upper 

case using the static Character.toUpperCase() method provided by the Character class.
3
 The 

nature of static methods is discussed in the next section.  

Static vs. Instance Methods 

As discussed in the previous section on static and instance constants, methods can also be declared as 

either static or instance methods. As with static constants, static method are shared by all class objects and 

behave in exactly the same way for each object. A consequence of this rule is that a static method may not 

access instance constants, variables or methods; it may only access static constants, variables and 

methods.  

As an example, consider the toString() method defined early in this section. This method returns a 

potentially different string for each temperature object because its return value is based on the 

myDegrees and myScale instance variables, which are potentially different for each temperature 

object. Thus, toString() must be defined as an instance method. 

As a second example, consider the isValidTemperature() method just implemented. This method 

does not access any instance variables or methods.  Instead, it receives the values it is to test via its 

parameters and accesses the absolute-zero class constants we defined earlier. Since it uses only class 

values and parameters, we define it as a class method (i.e., using static) rather than as an instance 

method. This allows its definition to be shared by all temperature objects. 

Accessor Methods 

An accessor is a method that allows a programmer to retrieve, but not modify, some attribute of a class.  

From an external perspective, a programmer should be able to call the class method  

 temperature1.getDegrees() 

to retrieve the myDegrees value of the temperature object temperature1 and call the class method 

 temperature1.getScale() 

to retrieve the myScale value of temperature1. As the names suggest, it is common practice for the 

name of an accessor method to begin with the prefix get followed by the attribute it is accessing. 

An autonomous temperature object will know its degrees value and its scale.  From an internal 

perspective, when I (a temperature object) receive a call to my getDegrees() method, I should return 

the value of my myDegrees instance variable.  We thus have this simple algorithm for 

getDegrees(). 

Algorithm: 

1. Return myDegrees. 

The code for the accessor methods for the Temperature class attributes is as follows.   

 

                                                      
3
 Given that scale is an integer-compatible type, the switch would likely be a more efficient choice. See the 

discussion of this specialized selection statement in Chapter 5 
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 public double getDegrees() { 

  return myDegrees; 

 } 
 

 public char getScale() { 

  return myScale; 

 } 

We mark these accessor methods as public to allow external programmers to access them. 

To illustrate how this works from an external perspective, consider the following code segment:  

Code: 
 Temperature temperature1 = new Temperature(); 
 System.out.println(temperature1.getDegrees()); 
 Temperature temperature2 = new Temperature(98.6, 'f'); 
 System.out.println(temperature2.getDegrees()); 
 

Output: 
 0.0 

98.6 

Note how each temperature object “knows” or keeps track of its own degrees value.  

Mutator Methods: Change Degrees 

Methods that change the values of an object’s instance variables change the internal state of the object 

and are thus called mutators. One example of a mutator method for the temperature class is change(), a 

method that changes the value of the temperature by a given amount of degrees. From an external 

perspective, the calling program must be able to tell a temperature object to change its degrees value. 

From an internal perspective, my change() method must contain the instructions that I (as an 

autonomous temperature object) must follow to change my degrees value (safely!). The algorithm for this 

mutator is: 

Algorithm: 

1. Receive an amount of degrees to add to myDegrees. 

2. If incrementing myDegrees by amount is still a valid temperature then: 

a. Increment myDegrees by amount. 

otherwise: 

a. Print an error message and terminate the program. 

In step 2, I must be certain that the new degrees value satisfies the class invariant before changing 

myDegrees. The scale will remain unchanged and therefore will still be ok, and we can always add to 

myDegrees without the risk of going below absolute zero, but the calling program could pass a negative 

value for amount, which might break the class invariant. The following code implements this algorithm: 

 public void change(double amount) { 
  double newDegrees = myDegrees + amount; 
  if (isValidTemperature(newDegrees, myScale)) { 
   myDegrees = newDegrees; 
  } else { 
   System.err.println("Invalid temperature change: " + amount); 
   System.exit(-1); 
  } 
 } 



9-16 

 

As discussed above, this code enforces the class invariant using the isValidTemperature() 

method. We mark this mutator method as public to allow external programmers to access it. Given this 

method, a programmer can now write 

Code: 
 Temperature temperature1 = new Temperature(32.0, 'F');  

 temperature1.change(20.0); 

 System.out.println(temperature1); 

Output: 
  52.0 F 

Here, temperature1 is changed from 32.0 F to 52.0 F.  

Mutator Methods: Set Scale 

A second example of a mutator method is setScale(), a method that changes the scale of the 

temperature object. From an external perspective, the calling program must be able to tell a temperature 

object to change its scale and expect the degrees value to change appropriately. That is, changing a 0.0C 

temperature to Fahrenheit should automatically change the degrees to 32.0. From an internal perspective, 

my setScale() method must contain the instructions that I (as an autonomous temperature object) 

must follow to change my scale and to convert my degrees value. The algorithm for this mutator is: 

Algorithm: 

1. Receive a scale value, scale. 

2. If scale is Celsius then: 

a. Convert myDegrees to the appropriate equivalent in Celsius. 

b. Set myScale to Celsius. 

Else if scale is Fahrenheit then: 

a. Convert myDegrees to the appropriate equivalent in Fahrenheit. 

b. Set myScale to Fahrenheit. 

Else if scale is Kelvin then: 

a. Convert myDegrees to the appropriate equivalent in Kelvin. 

b. Set myScale to Kelvin. 

Otherwise: 

a. Print an error message and terminate the program. 

This algorithm ensures that new scale is a legal scale, and makes the appropriate conversion. Note that if 

the current temperature satisfies the class invariant and the new scale is valid, then the new temperature 

will automatically satisfy the class invariant.The following code implements this algorithm for Celsius 

conversions: 
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 public void setScale(char scale) { 
  if (Character.toUpperCase(scale) == 'C') { 
   convertToCelsius(); 
  } else if (Character.toUpperCase(scale) == 'F') { 
   convertToFahrenheit(); 
  } else if (Character.toUpperCase(scale) == 'K') { 
   convertToKelvin(); 
  } else { 
   System.err.println("Invalid Temperature scale: (" + scale + ")"); 
   System.exit(-1); 
  } 
 } 
 

 private void convertToCelsius() { 
  if (myScale == 'F') { 
   myDegrees = 5.0 / 9.0 * (myDegrees - 32.0); 
  } else if (myScale == 'K') { 
   myDegrees = myDegrees - 273.15; 
  } 
  myScale = 'C'; 
 } 

This implementation makes use of the utility method convertToCelsius() to do the actual 

conversion of the degrees and the setting of the scale. The setScale() method is public and the 

convertToCelsius() method is private because external programs wishing to change the scale 

of a temperature should call the setScale() method. 

Given these methods, a programmer can now write 

Code: 
 Temperature temperature2 = new Temperature(32.0, 'F');  

 Temperature2.setScale('C'); 

 System.out.println(temperature2); 

 

Output: 
  0.0 C 

 

Here, temperature2 is set to 32.0 F and then converted to the equivalent Celsius value, 0.0.  

The private utility methods convertToFahrenheit() and convertToKelvin() are similar and are 

left as exercises. 

Cloning Temperatures 

As we saw with arrays in Chapter 8, making copies of reference types like arrays is not a trivial matter of 

using an assignment statement. Classes define new reference types and exhibit the same behavior. The 

following code segment does not make a copy of the temperature1 as one might expect: 

  Temperature temperature1 = new Temperature();  

  Temperature temperature2 = temperature1; 

The result of this code segment can be visualized as follows: 
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As with arrays, the assignment statement simply copies the handle of the reference type, that is, its 

reference, rather than actually copying the actual value. Using this approach to copying leads to the 

perhaps surprising consequence that changes made to temperature1 will also manifest themselves in 

temperature2, as shown in the following example code segment:  

Code: 
 Temperature temperature1 = new Temperature();  

 Temperature temperature2 = temperature1; 

 temperature1.change(10.0); 

 System.out.println("temperature1: " + temperature1); 

 System.out.println("temperature2: " + temperature2); 

Output: 
 temperature1: 10.0 C 

temperature2: 10.0 C 

 

Here temperature1 and temperature2 actually refer to the same Temperature object as shown 

above and, thus, adding 10 degrees to temperature1 changes the value of the object referred to by 

temperature2.  

To remedy this problem, a class can provide a copy() method. From the external perspective, a 

programmer would like to call the copy() method on one temperature object and have the method 

return a new, separate but equal copy of the original temperature object.
4
 The code for this method is as 

follows: 

 public Temperature copy() { 
  return new Temperature(myDegrees, myScale); 
  } 

This method simply uses the explicit value constructor to construct a new, equivalent temperature object. 

Using this new method, the unfortunate behavior shown in the example above can be fixed as shown here: 

Code: 
 Temperature temperature1 = new Temperature();  

 Temperature temperature2 = temperature1.copy(); 

 temperature1.change(10.0); 

 System.out.println("temperature1: " + temperature1); 

 System.out.println("temperature2: " + temperature2); 

Output: 
temperature1: 10.0 C 

  temperature2: 0.0 C 

Here, the use of our new copy() method creates a new object for temperature2 which is not 

affected by changes to temperature1. 

                                                      
4
 The Java Object class provides a clone() method that performs this copying function, but this method is 

protected and can only be exposed by specifying that the class implement Clonable. 
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9.3.3. Example Revisited 

As we saw in Section 9.2.3, Processing, as a specialized version of Java, also supports classes, and their 

use can be just as effective in graphical applications. The chapter example shown in Figure 9-1 calls for a 

pinball game with, among other things, stationary ball objects, a bouncing pinball and a movable paddle. 

This section will use the techniques developed in this section to implement classes in Processing for these 

elements of the example. 

The SimpleBall Class 

The instance variables, invariant and basic behaviors for the simple ball class are described in Section 

9.2.3. With these in hand, we can design the required methods using the following algorithm: 

Given:  

 myX and myY are floats that represent my x and y coordinates (we use floats because 

Processing supports floating point coordinates and to support some useful floating point 

methods that we will need); 

 myDiameter is an integer that has a positive value; 

 myColor is a legal color value. 

Algorithm (explicit-value constructor for a stationary ball): 

1. Receive x and y components and a diameter from my calling program; 

2. Set myX = x; 

3. Set myY = y; 

4. Set myDiameter = diameter (or 1 if diameter ≤ 0); 

5. Set myColor to a legal, random color; 

Algorithm (render()): 

1. Set my stroke and fill colors; 

2. Draw a circle with my location with my size. 
 

Here, the constructor method creates a colored, stationary ball with the given coordinates and diameter; 

for the ball to be visible, the display window must show the ball with the given state. In step 5, the 

constructor ensures that the diameter is positive. The render method draws the ellipse in the right place. 

The following code implements these elements of the simple ball class, plus a useful set of accessors and 

mutators: 

/** 

 * This class implements a non-moving ball obstacle for the PinBall  

 * application. 

 * 

 * @author kvlinden 

 * @version Summer, 2009 

 */ 

class SimpleBall { 
 

  private float myX, myY; 

  private int myDiameter; // This value must be non-negative 

  private int myColor; 
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  // default constructor 

  public SimpleBall() { 

    myX = 50.0; 

    myY = 50.0; 

    myDiameter = 25; 

    myColor = color(255); 

  } 
 

  // explicit-value constructor 

  public SimpleBall(float x, float y, int diameter) { 

    myX = x; 

    myY = y; 

    myDiameter = constrain(diameter, 1, MAX_INT); 

    myColor = color(random(255), random(255), random(255)); 

  } 

 

  // Accessor methods 

  public float getX() { 

    return myX; 

  } 

  public float getY() { 

    return myY; 

  } 

  public int getDiameter() { 

    return myDiameter; 

  } 

  public int getColor() { 

    return myColor; 

  } 
 

  // mutator method 

  public void setDiameter(int diameter) { 

    myDiameter = constrain(diameter, 1, MAX_INT); 

  } 
 

  // display utility method 

  public void render() { 

    stroke(0); 

    fill(myColor); 

    ellipse(myX, myY, myDiameter, myDiameter); 

  } 

} 

Note the API utility method render(). From an external perspective, the calling program must be able 

to display the ball whenever necessary (e.g., each time through the draw() method). From an internal 

perspective, my render() method must contain the instructions that I (as an autonomous 

SimpleBall object) must follow to display myself on the output pane.  

In the algorithm for this method, specified in Section 9.2.2, I can assume that my state variables are legal 

because I’ve been careful to enforce my class invariants in every case where I initialize or change the 

variables. The following code implements this algorithm: 
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  public void render() { 

    stroke(0); 

    fill(myColor); 

    ellipse(myX, myY, myDiameter, myDiameter); 

  } 

As a ball object, I can use this code to draw myself according the values of my attributes. We mark these 

accessor methods as public to allow external programmers to access them. 

Given this class definition, we can run the following program to produce the given output. ball1 

renders itself on the upper left and ball2 renders itself on the lower right. 

SimpleBall ball1, ball2; 
 

void setup() { 

  size(200, 200); 

  smooth(); 

  ball1 = new SimpleBall(); 

  ball2 = new SimpleBall(125, 125, 50); 

  noLoop(); 

} 
 

void draw() { 

  ball1.render(); 

  ball2.render(); 

} 

 
 

  

The Paddle Class 

The previous sections have detailed how to build a stationary ball class. This 

section shows how to upgrade the ball class to support bouncing and to add a 

paddle class, as shown in Figure 9-3. In this simplified version of the game, the 

ball drops from the top of the display window and bounces off the walls and the 

floor. The user can move the paddle from left to right using the mouse, but in this 

iteration the ball won’t bounce exclusively off the paddle. We’ll add this more 

desirable behavior in the next iteration.  

We start by implementing the paddle class. The game player sees the paddle as a 

flat rectangle at the bottom of the display window, but while Processing provides 

a rectangle drawing method (rect()), we need to implement a paddle class to 

encapsulate the full range of the paddle’s behavior. From the external perspective, 

a programmer would expect to be able to do the following:  

 Constructor – Create a new paddle object; 

 Render – Draw the object as a rectangle based on its current state.  

 Move – Tell the paddle where to position itself, based, for example, on the current location of the 

mouse or a default starting location as defined by the game rules, and the paddle object should 

remember this as part of its state; 

Figure 9-3. A simplified 

bounce-ball game sketch 
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From the internal perspective, I, as a Paddle object, need to include all those attributes and methods 

required to implement the state and behaviors required by my API. The attributes must include the 

following: 

 Coordinates – I must represent my x coordinate (a float). Note that because I always appear at 

the bottom of the screen, I don’t need to store a y-coordinate; 

 Dimensions – I must represent the width and thickness of my rectangle (ints).  

With these attributes in hand, I must implement methods for each of the behaviors specified above.  I can 

do this using the following algorithms: 

 

Given:  

 myX is a float that represents the horizontal center of the paddle and has a value such that 0 ≤ 

myX ≤ screen width; 

 myWidth and myHeight represent the width and height of my rectangle respectively.  

 myScreenWidth and myScreenHeight represent the width and height of the output 

display respectively.
5
 

Algorithm (constructor): 

1. Receive an x coordinate, desired paddle paddleWidth and the screenWidth and 

screenHeight.  

2. Set myX = x (must be between 0 and screenWidth); 

3. Set myWidth = paddleWidth (must be between 0 and screenWidth); 

4. Set myHeight = 5; 

5. Set myScreenWidth and myScreenHeight equal to screenWidth and 

screenHeight respectively. 

Algorithm (render()): 

1. Set my stroke and fill colors; 

2. Draw a rectangle at the bottom of the display window with my location with my size. 

Algorithm (move()): 

1. Receive from my calling program x, an x coordinate; 

2. Set myX = x (must be between 0 and screenWidth). 

Here, the constructor method creates a new paddle object and sets the attributes to the given values. We 

include the width of the display window so that the paddle object knows how far it can slide to the right 

and we keep the height so that the paddle knows how to draw itself at the bottom of the display window. 

The render method draws the right kind of rectangle in the right place. The move method, in step 2, must 

ensure that myX’s value is between 0 and the width of the display window. 

 

                                                      
5
 Processing treats new classes as inner classes, which would allow the Paddle class to access the width and 

height variables globally from the main sketch. This is not a standard approach in Java programming and can lead 

to problems of scalability. Thus, this text adopts the practice of passing parameters rather than making global 

references. 
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The implementation of this class is as follows. 

class Paddle { 
   

  private final int HEIGHT = 5; 
   

  private float myX; 

  private int myWidth, myHeight, myScreenWidth, myScreenHeight; 
     

  // explicit-value constructor 

  public Paddle(float x, int paddleWidth,  

                int screenWidth, int screenHeight) { 

    myX = constrain(x, 0, screenWidth); 

    myWidth = constrain(paddleWidth, 0, screenWidth); 

    myHeight = HEIGHT; 

    myScreenWidth = screenWidth; 

    myScreenHeight = screenHeight; 

  } 
   

  // accessor methods 

  public float getX() { 

    return myX; 

  } 

  public int getWidth() { 

    return myWidth; 

  } 

  // mutator method 

  public void move(float x) { 

    myX = constrain(x, 0, myScreenWidth); 

  } 

  // utility method 

  public void render() { 

    stroke(0); 

    fill(255); 

    rect(myX – (myWidth / 2), myScreenHeight - myHeight,  

         myWidth, myHeight); 

  } 

} 

 

For the most part, this implementation uses the basic techniques discussed in this section. As discussed 

above, the paddle class stores the width and height of the display window for use in maintaining the class 

invariants. The code implements only those accessor methods that are needed in this prototype.  

Adding Movement to the SimpleBall Class 

We now move to the bouncing ball class, which we will implement as an extended version of the 

stationary ball class discussed above. The ball should support the bouncing behavior sketched in Figure 

9-3. From an external perspective, we must add a movement behavior to the API:  

 Constructor – Create a new ball object; 

 Render – Draw the object as a ellipse based on its current state.  
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 Move – Ask the ball to move itself according to its internal state from a legal position in one 

animation frame to an appropriate position in the next frame. The ball should bounce off the walls 

and the floor. 

From an internal perspective, I, as a bouncing ball object, must add attributes for velocity and acceleration 

to handle the new API: 

 Coordinates – my x and y coordinates (float); 

 Velocity – my x and y velocities (float); 

 Acceleration – my x and y accelerations (float); 

 Dimensions – the diameter of my circle (int); 

 Color – my color (int).  

With these attributes in hand, I must make the following modifications to my stationary ball class 

algorithms: 

Given:  

 myX and myY are floats that represent my x and y coordinates; 

 myDiameter is an integer that has a positive value; 

 myVelocityX and myVelocityY are floats that represent my x and y coordinates; 

 myAccelerationX and myAccelerationY are floats that represent my x and y 

acceleration; 

 myColor is a legal color value. 

Algorithm (constructor): 

1. Receive x and y coordinates, diameter, xVelocity and yVelocity and 

xAcceleration and yAcceleration from my calling program; 

2. Set myX and myY to x and y; 

3. Set myDiameter = diameter (or 1 if diameter ≤ 0); 

4. Set myVelocityX and myVelocityY to xVelocity and yVelocity; 

5. Set myAccelerationX and myAccelerationY to xAcceleration and 

yAccleration; 

6. Set myColor to a legal, random color; 

Algorithm (render()): 

1. Set my stroke and fill colors; 

2. Draw a circle with my location with my size. 

Algorithm (move()): 

1. Increment my x and y positions by my x and y velocity values respectively; 

2. If I hit the side: 

a. Invert my x velocity and acceleration; 

3. If I hit the bottom: 

a. Invert my y velocity; 

4. Increment my x and y velocities by my x and y acceleration values respectively. 
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Note that you can see that in the move() algorithm, step 2.a inverts both velocity and acceleration 

whereas step 3.a only inverts the velocity. This is because the horizontal acceleration is (mostly) reflected 

by a bounce off the wall whereas the downward-directed gravitational constant is, well, constant.  

We can implement this upgraded algorithm as follows: 

class Ball { 

   

  private float myX, myY, myDiameter,  

                myVelocityX, myVelocityY,  

                myAccelerationX, myAccelerationY; 

  private int myColor; 

 

 

  public Ball(float x, float y, float diameter,  

              float velocityX, float velocityY,  

              float accelerationX, float accelerationY) { 

    myX = x; 

    myY = y; 

    myDiameter = constrain(diameter, 1, MAX_INT); 

    myVelocityX = velocityX; 

    myVelocityY = velocityY; 

    myAccelerationX = accelerationX; 

    myAccelerationY = accelerationY; 

    myColor = color(random(255), random(255), random(255)); 

  } 

   

  public void render() { 

    stroke(0); 

    fill(myColor); 

    ellipse(myX, myY, myDiameter, myDiameter); 

  } 

   

  public void move() { 

    myX += myVelocityX; 

    myY += myVelocityY; 

    if (hitsSide()) { 

      myVelocityX *= -1; 

      myAccelerationX *= -1; 

    } 

    if (hitsBottom()) { 

      myY = height - myDiameter/2 - paddle.getHeight(); 

      myVelocityY *= -1; 

    } 

    if (Math.abs(myVelocityX) < 0.01) { 

      myVelocityX = 0.0; 

    } 

    myVelocityX += myAccelerationX; 

    myVelocityY += myAccelerationY; 

  } 
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  // determines if this ball has hit the side of the display   

  private boolean hitsSide() { 

    return (myX - myDiameter/2 <= 0) || (myX + myDiameter/2 >= width); 

  } 
   

  // determines if this the ball hits the bottom of the display   

  private boolean hitsBottom() { 

    return Math.abs(myY + myDiameter/2 + paddle.getHeight() - height)  

           <= myVelocityY; 

  } 

} 

 

The move() method implementation has some additional, private utility methods that it uses to 

determine if the ball hits the sides of the display, hitsSide(), or the bottom of the display, 

hitsBottom().  These methods are marked as private because they are not part of the external API 

for the Ball class and should thus only be used internally. The methods are relatively simple utility 

methods that return Boolean values used in the move() method.  

With the Paddle and Ball classes in place, we can now using the following code to implement our 

bouncing ball game. 

final int BALL_RADIUS = 20, PADDLE_WIDTH = BALL_RADIUS * 5; 
 

Ball ball; 

Paddle paddle; 
 

void setup() { 

  size(300, 300); 

  background(255); 

  ball = new Ball(width - 

BALL_RADIUS*2, BALL_RADIUS, 

BALL_RADIUS,  

                  random(-2.0, 2.0), -

0.0, 0.0017, 1.0); 

  paddle = new Paddle(width / 2, 

PADDLE_WIDTH, width, height); 

} 
 

void draw() { 

  // Whitewash the previous frames. 

  noStroke(); 

  fill(200, 50); 

  rect(0, 0, width, height); 
   

  ball.render(); 

  ball.move(); 

  paddle.render(); 

} 
 

void mouseMoved() { 

  paddle.move(mouseX); 

} 
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The output of this game program is shown on the right. The program constructs a ball and a paddle and 

repeatedly moves the ball and renders the ball and the paddle. The paddle movement is implemented by 

the mouseMoved() method and the background is slowly whitewashed away in the animation using the 

technique described in Chapter 4. 

9.4. Object Interaction 

Objects in the real world interact with one another. Therefore, we would like to model these interactions 

in our programs. In the case of temperature objects, we would like to be able to compare one temperature 

object with another. For example, we might want to know if one temperature object represents a 

temperature that is lower than the temperature represented by another temperature object. 

9.4.1. Comparing Temperatures 

Because Java does not allow us to overload operators, we cannot simply use the expression  

temperature1 < temperature2. Instead, we can implement our own comparison methods. From 

an external perspective, a programmer could compare two temperatures as follows: 

Code: 
 Temperature oldTemperature = new Temperature(10.0, 'C');  

 Temperature newTemperature = new Temperature(20.0, 'C'); 

 if (oldTemperature.lessThan(newTemperature)) { 

  System.out.println("It’s getting warmer!"); 

 } 

 

Output: 
It’s getting warmer! 

Note how lessThan() is called on oldTemperature, passing newTemperature as an 

argument. This is the same structure we use to compare string values, as in 

oldString.equals(newString). This may be somewhat less intuitive than the operator 

overloading approach, but it is a very object-oriented view.  

Note that if temperature1 refers to 0C and temperature2 refers to the 32 F, then the expression  

temperature1.lessThan(temperature2) 

should return false, since these two temperatures are in fact equal.  Implementing lessThan() is thus 

not just a simple matter of comparing the degrees values of the two temperatures; we must consider the 

scale as well. We can implement lessThan() as follows: 

 public boolean lessThan(Temperature otherTemperature) { 

  Temperature temp = otherTemperature.copy(); 

  temp.setScale(myScale); 

  return myDegrees < temp.getDegrees(); 

 } 

This implementation resolves the problem of different scales by converting the other temperature received 

as a parameter value to the appropriate scale before comparing degrees. Once we have two temperatures 
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in the same scale, we can simply compare their myDegrees values using the normal less-than operator. 

From the internal perspective, I, as a temperature object, am being asked to compare myself with another 

temperature. To do this, I convert that other temperature to my scale so that I can directly compare my 

degrees with its degrees.   

Note that lessThan() starts by making a copy of the temperature parameter value before working with 

it. This is important because any change made to otherTemperature, a reference type, will manifest 

itself in the calling program as well. Thus, it’s safer to work with a temporary copy of the other 

temperature so as not to risk modifying the arguments passed to this method. 

As we consider implementing the other comparison methods, it becomes clear that we’d be repeating 

much of the same code. For example, the lessThanOrEqualTo() method would be identical to the 

lessThan() method except that the return statement would use <= rather than <.  Much the same 

would be true for the other comparison methods. When we face the prospect of duplicating code in this 

manner over and over again, it is wise to consider whether there is a common function shared by all the  

comparison operators that can be factored out and implemented separately. In this case, we can adopt the 

approach used in Java’s String, BigInteger, and various other classes, and implement a general 

compareTo() method that “factors out” the code that these comparison methods have in common.  More 

precisely, in keeping with these other classes, we can specify that our compareTo() method should 

behave as follows 

Algorithm: 

1. Receive otherTemperature, another temperature object. 

2. Declare temp as a copy of otherTemperature. 

3. Set the scale of temp to be myScale. 

4. If myDegrees < temp’s degrees then 

a. Return -1. 

Else if myDegrees > temp’s degrees then 

b. Return +1. 

Else  

a. Return 0. 

This algorithm uses elements of functionality from lessThan() that would likely have to be 

reimplemented in lessThanOrEqualTo(), but returns 0, –1, or +1 depending on whether 

myDegrees is equal to, less than, or greater than temp’s degrees.  This algorithm can be implemented 

as follows: 

 private int compareTo(Temperature otherTemperature) { 

  Temperature temp = otherTemperature.copy(); 

  temp.setScale(myScale); 

  if (myDegrees < temp.getDegrees()) { 

   return -1; 

  } else if (myDegrees > temp.getDegrees()) { 

   return 1; 

  } else { 

   return 0; 

  } 

 } 
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Given this method, the relational operators can now be implemented with almost no duplicate code.  For 

example, the equals() and lessThan() methods can be defined using compareTo() as follows: 

 public boolean lessThan(Temperature otherTemperature) { 

  return compareTo(otherTemperature) < 0; 

 } 

 

 public boolean equals(Temperature otherTemperature) { 

  return compareTo(otherTemperature) == 0; 

 } 

 
Thus, by “factoring out” the code common to all the comparison methods, we were able to write  methods 

that are simpler and, therefore easier to debug and to maintain. The remaining relational operators can be 

defined in a similar fashion and are left as exercises. 

9.4.2. Example Revisited 

In our running example, we would like our simple ball objects to 

bounce, not just off of the walls and the floor, but also off of each 

other and off of the paddle. We’d have to detect when two balls “hit” 

each other and then program a “collision” algorithm that reflects 

their velocities in the appropriate directions. 

Handling Inter-ball Collisions 

We would like to model collisions such as those shown in the sketch 

in Figure 9-4. In this sketch, two ball objects are moving toward 

each other, one from the left and one from the right. When they hit 

each other in the middle of the display window, they should collide 

and move off in new directions based on the precise point of contact.  

To implement this, our draw() animation loop must not only ask balls to move and render themselves 

for each frame, but it will also need to check if the balls hit each other and if so, implement the collision. 

We could write methods to check for the hit and perform the collision directly in the main sketch, but in 

the object-oriented paradigm, we think instead of responsibility. What object is responsible for knowing 

about collisions? What object has access to the position and velocity values required to perform these 

calculations? In our case, this object is the ball itself. The ball object knows its position and its velocity 

and we’ve already asked it to move and render itself. Why not ask it to determine if it is hitting another 

ball and if so, to reflect its velocities in the correct way?   

We’ve encountered this object-centered thinking already in this text. Recall that when we want to 

determine if two string objects are equal (in the sense that they have the same characters in the same 

order), we use one of the following expressions: 

myString.equals(myOtherString) 

myString.equalsIgnoreCase(myOtherString) 

These expressions ask myString to check and see if it is equal to a given argument (i.e., 

myOtherString). This seems an odd way to think about checking string equivalence, but this is the 

Figure 9-4. A colliding balls sketch 
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way we work with reference types in Processing and Java.
6
 We need to implement hit and collide 

methods that operate in a similar, object-oriented way and add them to our Ball class API. 

To upgrade the Ball class to support collisions, we retain its current set of implemented attributes and 

methods, and add the following new methods: 

 

Algorithm (hits()): 

1. Receive a SimpleBall object, otherBall, from 

the calling program; 

2. Return true if the distance between my x-y 

coordinates and those of otherBall is less than 

the sum of my radius and otherBall’s radius. 

 

This collision algorithm returns true if the distance between my center point and the other ball’s center 

point is less than the sum of our radii. This is shown in the figure to the right in which I am the ball to the 

upper left, and otherBall is the ball on the lower right. 

 

Note how the algorithm refers to “my” x coordinate (to be implemented as myX) and the “the other ball’s” 

x coordinate (to be implemented as otherBall.getX()). As a SimpleBall object, I have access to my 

own x coordinate directly, but not to the other ball’s x coordinate. For that coordinate, I must use the other 

ball’s accessor method. This is the manner in which one object can interact with another. 

 

Algorithm (collide()): 

1. Receive a SimpleBall object, otherBall, from the calling program; 

2. Set angle = atan2(otherBall’s y – myY, otherBall’s x – myX); 

3. Set otherBallX = myX + cos(angle) * (myDiameter/2 + 

otherBall.getDiameter()/2); 

4. Set otherBallY = myY + sin(angle) * (myDiameter/2 + 

otherBall.getDiameter()/2); 

5. Set ax = (otherBallX - otherBall’s x); 

6. Set ay = (otherBallY - otherBall’s y); 

7. Set myVelocityX = (myVelocityX - ax); 

8. Set myVelocityY = (myVelocityY - ay); 

This collision algorithm modifies my x and y velocities based 

on the angle of intersection between my center point and 

otherBall’s center point. This angle is computed using the 

two-argument arc-tangent function (atan2), which computes the 

angle shown in the figure to the right. The algorithm then uses 

                                                      
6
 With primitive types in Processing, like int, we can simply execute an operation, say addition, using the 

expression: 1 + 1. In more fully object-oriented languages, however, there are no primitive types and everything, 

even integer addition, must be done in an object-oriented way: myInteger.add(myOtherInteger). 
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this angle to modify the velocities of this ball appropriately.
7
 This method interacts with the other ball 

object in the same manner as the hits() method interacts with the other ball.  

Handling Ball-Paddle Interaction 

We are now prepared to implement the interaction between the bouncing ball 

and the paddle. In particular, we would like to modify the sketch shown in 

Figure 9-3 so that the ball only bounces up when it hits the paddle, and falls into 

oblivion if it otherwise hits the floor. We will also take this opportunity to add 

an array of falling balls, just to make the user’s job challenging. A sketch of this 

behavior is shown in Figure 9-5. 

Modifying the ball class to implement bouncing only off the paddle requires the 

following small change to its move() method. 

Algorithm (move()): 

1. Receive paddle, the game’s paddle object; 

2. Increment my x and y positions by my x and y velocity values 

respectively; 

3. If I hit the side: 

a. Invert my x velocity and acceleration; 

4. If I hit the bottom and the paddle: 

a. Invert my y velocity; 

5. Increment my x and y velocities by my x and y acceleration values respectively. 

We can implement this modified algorithm as follows. 

  public void move(Paddle paddle) { 

    myX += myVelocityX; 

    myY += myVelocityY; 

    if (hitsSide()) { 

      myVelocityX *= -1; 

      myAccelerationX *= -1; 

    } 

    if (hitsBottom() && hitsPaddle(paddle)) { 

      myY = height - myDiameter/2 - paddle.getHeight(); 

      myVelocityY *= -1; 

    } 

    if (Math.abs(myVelocityX) < 0.01) { 

      myVelocityX = 0.0; 

    } 

    myVelocityX += myAccelerationX; 

    myVelocityY += myAccelerationY; 

  } 

   

  private boolean hitsPaddle(Paddle paddle) { 

    return Math.abs(myX - paddle.getX()) < (paddle.getWidth() / 2); 

  } 

                                                      
7
 This algorithm is based on the collision algorithm presented in Algorithms for Visual Design, K. Terzidis, Wiley, 

2009. For a more detailed discussion of how this algorithm works, see that text. 

Figure 9-5. Multiple balls that 

bounce off the paddle 
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This modified code uses interacting objects, in this case, the Ball class using the Paddle class, to 

implement the paddle bouncing behavior that we desire. 

To implement multiple balls, we modify the main program sketch, which is responsible for the basic 

game animation. This responsibility includes the determination of how many balls and how many paddles 

there will be as well as if and when the various objects are expected to interact with one another. The 

modified program is as follows, with the output shown first. 

 

/** 

 * BounceBall implements a simple paddleball game with multiple balls. 

 * 

 * @author kvlinden 

 * @version Fall, 2009 

 */ 
 

final int BALL_RADIUS = 20,  

          PADDLE_WIDTH = BALL_RADIUS * 5,  

          BALL_COUNT = 20; 
 

Ball[] balls; 

Paddle paddle; 

float phaseIn; 
 

void setup() { 

  size(400, 200); 

  background(255); 

  balls = new Ball[BALL_COUNT]; 

  for (int i = 0; i < balls.length; i++) { 

    balls[i] = new Ball(random(width - BALL_RADIUS * 2) + BALL_RADIUS,  

                        BALL_RADIUS, BALL_RADIUS, random(-2.0, 2.0),  

                        -0.0, 0.0017, 1.0); 

  } 

  paddle = new Paddle(width / 2, PADDLE_WIDTH, width, height); 

  phaseIn = 0.0; 

} 
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void draw() { 

  // Slowly whitewash the previous frames. 

  noStroke(); 

  fill(200, 50); 

  rect(0, 0, width, height);   
  

  for (int i = 0; i < balls.length && i < phaseIn; i++ ) { 

    balls[i].render(); 

    balls[i].move(paddle); 

  } 

  paddle.render(); 

  phaseIn += 0.1; 

} 
 

void mouseMoved() { 

  paddle.move(mouseX); 

} 

To implement the paddle bouncing behavior, this program simply uses the new move() method from the 

Ball class and passes the paddle as an argument. The ball’s move() method does the rest, with the help 

of course from the Paddle class.  

To implement the multiple balls, we have chosen to phase the additional balls in slowly rather than 

dumping them all at the very beginning of the game. We implement this using the phaseIn variable, 

which we initialize to 0.0 and then increment by 0.1 on each animation frame and then use as a limit on 

the for loop in the animation. The for condition expression is the unusually complex condition: 

i < balls.length && i < phaseIn 

The first part of the condition (i < balls.length) limits the loop to the total number of balls we 

have initialized for this animation; this is the sort of condition we have used before in our counting loops. 

However, we add a second condition (i < phaseIn) which has the effect of stopping the for loop 

before it has processed all the balls in the ball array. As the value of phaseIn grows, the number of balls 

that are actually rendered and moved grows; by the end of the animation, all the balls have been released. 

9.5. Revisiting the Example 

As a final prototype for the chapter example, this section modifies the bounceBall prototype from the last 

section to produce a pinball game in which only one ball moves and a number of other balls are fixed at 

random locations in space as targets (i.e., bumpers in a normal pinball game). The moving ball bounces 

off the targets if it collides with them, and on each bounce a bit of extra velocity is added to model the 

springs on real pinball games. The ball shoots up from the bottom right at the beginning of the game. 

We implement the bounce boost factor by making the following small change to the Ball’s collide() 

method: 
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  public final float BOOST_FACTOR = 1.01; 

  public void collide(Ball target) { 

    float angle = atan2(target.getY() - myY, target.getX() - myX); 

    float targetX = myX + cos(angle) *  

                          (myDiameter/2 + target.getDiameter()/2); 

    float targetY = myY + sin(angle) *  

                          (myDiameter/2 + target.getDiameter()/2); 

    float ax = (targetX - target.getX()); 

    float ay = (targetY - target.getY()); 

    myVelocityX = (myVelocityX - ax) * BOOST_FACTOR; 

    myVelocityY = (myVelocityY - ay) * BOOST_FACTOR; 

  } 

 

We model the stationary target bumpers and the moving ball as Ball objects. The game engine simply sets 

the velocity of the target bumpers to zero and sets the moving ball’s velocity appropriately. The paddle 

operates as it did before. The key change to the game engine algorithm is the addition of the following 

steps that handle the situations when the moving ball bounces off the stationary target bumpers. 

Algorithm (draw()): 

1. Whitewash the previous frames away; 

2. Display and move the pinball; 

3. Repeat for each of the stationary target bumpers: 

a. Draw the current target bumper (again, so that it doesn’t get whitewashed away); 

b. If the moving ball hits the current target bumper: 

i. Ask the pinball to collide itself with the current target bumper; 

4. Draw the paddle. 

The key change in this algorithm is the repetition statement that implements the bouncing. The moving 

ball can, at any frame in the animation, come into contact with any of the target bumpers, so this 

algorithm visits each target bumper and checks to see if the pinball is hitting that target. If it is, the 

program asks the pinball to run its collide() method with respect to the given target bumper. Because 

the target bumpers don’t move, this algorithm never needs to ask them to run their collision method. 

 

The code that implements this final iteration is shown here with the output shown below. 

 /** 

 * PinBall extends bounceBall to a simple pinball game with 

 * some random balls with fixed positions serving as targets. 

 * The main ball bounced off the walls, paddle and targets. 

 * 

 * @author kvlinden 

 * @version Fall, 2009 

 */ 
 

final int TARGET_COUNT = 4, BALL_RADIUS = 10,  

          PADDLE_WIDTH = BALL_RADIUS * 10; 

final int WIDTH=500, HEIGHT=400; 
 

Ball[] targets; 
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Paddle paddle; 
 

void setup() { 

  size(WIDTH, HEIGHT); 

  background(255); 

  targets = new Ball[TARGET_COUNT]; 

  int targetRadius; 

  for (int i = 0; i < targets.length; i++) { 

    targetRadius = (int)random(BALL_RADIUS * 2, BALL_RADIUS * 5); 

    targets[i] = new Ball(random(targetRadius, WIDTH - targetRadius),  

                      random(targetRadius, HEIGHT - targetRadius * 2),  

                      targetRadius); 

  } 

  paddle = new Paddle(WIDTH / 2, PADDLE_WIDTH); 

} 

 

void draw() { 

  // Slowly whitewash the previous frames. 

  noStroke(); 

  fill(200, 25); 

  rect(0, 0, WIDTH, HEIGHT); 

   

  // Process the moving pinball. 

  ball.render(); 

  ball.move(paddle); 

 

  // Process the target bumpers. 

  for (int i = 0; i < targets.length; i++) { 

    targets[i].render(); 

    // Bounce the ball off the target if appropriate. 

    if (ball.hitsTarget(targets[i])) { 

      ball.collide(targets[i]); 

    } 

  } 
 

  // Draw the paddle. 

  paddle.render(); 

} 
 

void mouseMoved() { 

  paddle.move(mouseX); 

} 

 

The implementation of  ball.hitsTarget() method is left as an exercise. 
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9.6. Object-Oriented Programming 

This section has demonstrated the power provided by the object-oriented principle of encapsulation. 

While it would certainly have been possible to implement the games shown in this chapter without the use 

of classes, it is clear that abstraction provided by encapsulation drastically simplified the complexity of 

implementing multiple interacting objects.   

Consider, for example, the relative simplicity of the game engine from our final prototype. The Ball and 

Paddle classes are responsible for implementing the complex behaviors of the objects themselves, which 

makes the main game loop relatively simple because it is only responsible for implementing the rules of 

the game and running the animation. 

We will defer to a later section the discussion of the additional power gained through the use of the other 

two object-oriented principles: inheritance and polymorphism. 


