
8-1 

 

Chapter 8.   Arrays and Files 

In the preceding chapters, we have used variables to store single values of a given type. It is sometimes 

convenient to store multiple values of a given type in a single collection variable. Programming languages 

use arrays for this purpose. It is also convenient to store such values in files rather than by hard-coding 

them in the program itself or by expecting the user to enter them manually. Languages use files for this 

purpose. This chapter introduces the use of arrays and files in Java and Processing.   

As in previous chapters, the running example is implemented in Processing but the remainder of the 

examples on arrays, array topics and multi-dimensional array can work in either Processing or Java. The 

material on files is Processing-specific; Java files are treated in a later chapter. 

8.1. Example: Visualizing Data 

Computers are powerful tools both for collecting and storing large amounts of data and for analyzing and 

presenting the patterns and trends in that data. These patterns and trends are commonly called 

information, and the computer is commonly used as a tool for deriving information from data. For 

example, computers have been used to collect and store thousands of statistics on human life and health 

for the United Nations, millions of customer records for multinational corporations, and billions of data 

points for the human genome project. Computers have also been used to mine useful information from 

these data sets. Processing provides all of these capabilities, with a particular emphasis on data 

visualization, whose goal is to present data in such as way as to allow humans to see the informational 

“big picture” that is so easily lost in the volumes of raw data. 

Note that data representation and visualization are not easy tasks. Collecting and managing large data sets 

is challenging because of the myriad ways in which the data can be corrupted or lost. Processing large 

data sets requires considerable computing power and careful programming. Presenting data accurately 

requires careful extraction of data abstractions that are faithful to the original data. The entire field of 

information systems, a sub-field of computing, has arisen to address these issues.  

In this chapter, our vision is to build an application that can 

display an appropriate set of data as a bar chart such as the 

one shown in the rough sketch in Figure 8-1. This is a 

standard bar chart in which each labeled bar represents a 

single data value and we’d like to add some aggregate 

statistics at the bottom. Bar charts such as this one allow the 

human visual system to perceive the relative values in this 

data set. Our goal is to display the average life expectancy 

in years of a newborn child in the five permanent members 

of the UN Security Council for the year 2007.  

 

Figure 8-1. A bar chart showing created 

from a list of data values 

 



8-2 

 

Building a visualization such as this one requires that the application be able to: 

 Represent the data, including the life expectancy values and the corresponding country names; 

 Analyze the data and derive aggregate statistics (e.g., average, minimum and maximum values); 

 Store the data permanently; 

 Present the data in a visual bar chart. 

We can achieve the last element of the vision, presenting the data as text and bars of appropriate sizes, 

using techniques discussed in the previous chapters. This chapter focuses on the first three elements. We 

will use arrays to represent the data, array processing techniques to analyze the data, and files to store the 

data permanently. 

8.2. Arrays 

The first element of the chapter example vision is to represent the five data values shown in Figure 8-1. In 

previous chapters, we would do this using five separate variables: 

float expChina = 72.961, 

      expFrance = 80.657, 

      expRussia = 65.475, 

      expUK = 79.425, 

      expUSA = 78.242; 

This approach could work, but consider the problem of computing the average of these data values. This 

would require the use of the following expression: 

(expChina + expFrance + expRussia + expUK + expUSA) / 5 

Now, consider the fact that the International Standards Organization officially recognizes over 200 

countries. This means that working with data for all the countries would require over 200 separate float 

variables and expressions with separate operands to match. 

As an alternative to the simple variable, which stores exactly one value, Java provides a data structure that 

stores multiple values of the same type. We have already seen an example of this sort of structure; Java 

represents variables of type String as lists of char values that can be accessed using an index. For 

example, if aString is a variable of type String, then aString.charAt(i) will return the char 

value in aString with index i. This section describes how to declare, initialize and work with indexed 

structures. 

8.2.1. Declaring and Initializing Arrays 

Java represents indexed data structures using arrays. Arrays are objects, which means that they must be 

accessed via handles. To define an array, we must declare an array handle and initialize the value referred 

to by that handle. To declare an array handle, we use the following pattern: 

 type[] name; 



8-3 

 

Here, type specifies the kind of values the array can store (e.g., float), the brackets ([]) indicate that an 

array is being defined and name is the handle through which the array can be accessed. For example, to 

declare an array of float values, we use the following code: 

 float[] expectancyValues;  

This declaration tells Java that the expectancyValues handle references an array of floats. The array 

can be of any size. The data structure produced by this declaration can be viewed as follows: 

 

 

 

Here, the expectancyValues handle is ready to reference an array of float values but currently 

references only a null value, denoted here by an electrical ground symbol. Before this handle can be 

used, we must replace this null value by creating an array. 

Array Creation and Initialization using new 

The typical way to create a new array is to use the new operation; this is the customary approach for 

reference types. The pattern for this creation is as follows. 

 new type[size] 

Here, type specifies the type of values the array can store and size represents the number of those 

values that must be stored. Java automatically allocates a sufficient amount of contiguous memory for the 

specified number of values of the specified type. 

For example, the following code allocates a block of memory large enough to represent five float values 

and initializes expectancyValues as a handle for that memory. 

 final int COUNTRY_COUNT = 5; 

float[] expectancyValues = new float[COUNTRY_COUNT]; 

We can create an array of any size, but once created, the size remains fixed. This data structure can be 

visualized as follows: 

 

 

 

 

Here, expectancyValues is a handle that points to a set of five adjacent values. Each value, known 

as an array element, is of type float and may change during the execution of program as is the case 

with variables. Compilers often initialize float values to 0.0, but it is unwise for a program to assume 

this without explicitly initializing the values itself (as described in the next section).  Java initializes this 



8-4 

 

data structure by allocating a fixed amount of adjacent memory locations appropriate for representing the 

number and type of the elements. Once initialized, the length of the array cannot be modified.  

Array Indexes 

Each array value has an assigned index running from 0 to 4, shown in the figure using square braces. A 

program can access an individual array element using the subscript operator ([]), which requires the 

array’s name and the item’s index value. The pattern for using this operator to access the element of the 

array anArray of index i is shown here:  

 anArray[i] 

In Java, array indexing uses a zero-based scheme, which means that the first item in the 

expectancyValues array can be accessed using the expression expectancyValues[0], the 

second value using the expression expectancyValues[1], and so forth. These subscript expressions 

are known as indexed variables because a program can use them as it uses any other variable. For 

example, a program can set the value of the first expectancy variable using this assignment statement. 

 expectancyValues[0] = 72.961;  

When the program is running, Java’s subscript operation tests the value of the index and throws an error if 

the index value is out of bounds. For example, the evaluating the expressions expectancyValues[-

1] or expectancyValues[6] will throw errors. 

ArrayLength 

The number of elements in an array is known as the length of the array and can be accessed using the 

array length property.
1
 For example, the length of the expectancyValues array can be accessed 

using expectancyValues.length, which returns integer value 5, and the last element of the array 

can be accessed using expectancyValues[expectancyValues.length – 1]. 

Array Initializers 

Java supports a way to initialize array values using array initializers. The following code initializes an 

array with the values shown in Figure 8-1. 

      float[] expectancyValues = {72.961, 80.657, 65.475, 79.425, 78.242}; 

This code initializes the values in the array to the literal float values specified in the braces ({}). In 

this case, Java allocates the size of the array data structure to fit the number of values found in the array 

initializer expression. This array initializer cannot be used as an array literal in other contexts; it must be 

used to initialize the array as shown here. 

Java does not require arrays to store only values of primitive types. Arrays can store reference types as 

well. This statement defines an array of string objects: 

String[] expectancyCountries =  

              {"China", "France", "Russia", "UK", "USA"}; 

                                                           
1
 In Java, a program accesses an array’s length using the length property, e.g., anArray.length, whereas it 

accesses a string’s length using the length() method, e.g., aString.length(). 



8-5 

 

This data structure can be visualized as follows: 

 

Here the array elements are not primitive values, but handles for String reference objects. 

Array definitions in Java have the following general pattern: 

8.2.2. Working with Arrays 

Because Java implements arrays as fixed length, indexed structures, the counting for loop provides an 

effective way to work with array elements. For example, the following code prints the names of the five 

countries represented by expectancyCountries: 

Code: 

 for (int i = 0; i < expectancyCountries.length; i++) { 

   println(i + ": " + expectancyCountries[i]); 

 } 

 

 

ElementType[] arrayName; 

or 

ElementType[] arrayName = new ElementType[length]; 

or 

ElementType[] arrayName = arrayInitializer; 

 

 ElementType is any type (including an array type); 

 arrayName is the handle for the array object being defined – if there is no 

assignment clause in the statement, the handle value is set to null; 

 length is an expression specifying the number of elements in the array; 

 arrayInitializer is the list of literal values of type ElementType, enclosed 

in curly braces ({ }). 

 

Array Definition Pattern 



8-6 

 

Output: 

 0: China 

1: France 

2: Russia 

3: UK 

 4: USA 

This code loops through each index value of the expectancyCountries array, from 0 to 

expectancyCountries.length - 1, printing out the index value i and the value of the array 

element at that index value. Note that this code works regardless of the length of the 

expectancyCountries array. 

Arrays and Methods 

Programs can pass arrays as parameters and produce them as return values. For example, the following 

method receives an array from its calling program and returns the average of the values in the array: 

float computeAverage(float[] values) { 
 

  // Verify that the array actually has values first. 

  if ((values == null) || (values.length <= 0)) { 

    return 0.0; 

  } 
 

  // Compute and return the average. 

  float sum = 0.0; 

  for (int i = 0; i < values.length; i++) { 

    sum += values[i]; 

  } 

  return sum / values.length; 

} 

This method specifies a single parameter of type float[]; an array of any size can be passed to this 

method via such a parameter. The method first checks the parameter and returns 0.0 if the array handle is 

null or if the array is empty. This prevents null pointer and division by zero errors.  If the values 

array passes these tests, then the method computes and returns the average of the float values.  

The method uses a common algorithmic pattern called the accumulator pattern, in which the sum 

variable is used to accumulate the total value of the array entries. We will use this pattern frequently when 

working with arrays. 

Methods can also return array objects. For example, the following method constructs and returns an array 

of a specified number of 0.0 values: 

float[] constructZeroedArray(int arrayLength) { 

  if (arrayLength < 0) { 

    arrayLength = 0; 

  } 

 



8-7 

 

float[] result = new float[arrayLength]; 

  for (int i = 0; i < arrayLength; i++) { 

    result[i] = 0.0; 

  } 

  return result; 

} 

This method receives an integer representing the length of the desired array, verifies that it is at least 0, 

constructs the array, fills the array with values of 0.0, and finally returns the array. Note that Java and 

some other languages often initialize numeric array values to 0, but as discussed in the previous section, it 

generally not a good idea for a program to assume this. 

Reference Types as Parameters 

In Chapter 3 we discussed the distinction between primitive types and reference types, where primitive 

types store simple values and reference types store references, or pointers, to values. Arrays are reference 

types. The following diagram illustrates the difference: 

 

On the left, we declare an integer i, whose value is the primitive integer value 1 as shown; on the right, 

we declare an integer array a whose value is a reference to the two-valued array as shown. 

This distinction is important when using arrays and other reference types as parameters. Consider the 

following code, which initializes an integer variable i to the value 1 and passes that primitive value as an 

argument to the changeValue() method. 

Code: 
public static void main(String[] args) { 
 int x = 1; 
 changeValue(x); 
 System.out.println("In main(), x == " + x); 
} 
 
public static void changeValue(int x) { 
 x = 2; 
 System.out.println("In changeValue(), x == " + x); 
} 
 

Output: 
In changeValue(), x == 2 

 In main(), x == 1 

 



8-8 

 

This code behaves as we would expect given our discussion of parameter passage in Chapter 4: 

1. When main() calls changeValue(), it computes the value of its argument expression, x, and 

copies that value into changeValue()’s  formal parameter, also called x. Note that there are 

two variables named x, one in main()’s scope and one in the changeValue()’s scope; 

2. changeValue() then changes the value of its copy of x to 2 and prints this new value; 

3. Finally, Java returns control to main(), which prints out the value of its copy of x (still 1). 

In this parameter passage technique, called pass-by-value, the value of the argument is passed to the 

parameter. Java passes all of its parameters by value. However, because an array is a reference object, the 

pass-by-value technique leads to potentially unexpected results. Consider the following code, which 

initializes an integer array variable a to the array initializer value {1, 2} and passes that reference value 

as an argument to the changeArray() method: 

Code: 
public static void main(String[] args) { 
 int[] a = { 1, 1 }; 
 changeArray(a); 
 System.out.println("In main(): " + "{" +  

a[0] + ", " + a[1] + "}"); 
} 
 

public static void changeArray(int[] a) { 
 a[0] = 3; 
 a[1] = 4; 
 System.out.println("In changeArray(): " +  

"{" + a[0] + ", " + a[1] + "}"); 
} 
 

Output: 
In changeArray(): {3, 4} 
In main(): {3, 4} 

Note that the output of this code is different from the example given earlier. Here, changeArray() 

changes the values in the array permanently, which is why both calls to println() print the new values 

(3, 4). This code behaves as follows: 

1. When main() calls changeArray(), it computes the value of its argument expression, a, and 

copies that reference value into changeArray()’s  formal parameter, also called a. Java is still 

passing the array reference by value, but you can see in the diagram that the actual storage for the 

array values, referenced by a, is not copied; 

2. changeArray() then changes the value of its copy of a to 3,4 and prints this new value; 

3. Finally, Java returns control to main(), which prints out the value referenced by its copy of a 

(now 3, 4). 

So while this is still pass-by-value behavior, the nature of the reference value being passed allows the 

original value of the argument to be accessed and changed by reference.  



8-9 

 

Though strings are reference types, implemented as arrays of characters, Java provides some features that 

allow programmers to work with them as primitive types. For example, one can initialize a String value 

by saying String myString = “a string value” rather than using new and Strings are 

passed by value to Java methods rather than by reference. 

8.2.3. Predefined Array Operations 

Java provides a few operations that can be used with arrays, including the assignment operator (=), the 

clone() method, and the equals() method.  We will now take a closer look at each of these 

operations. 

Array Assignment   

Java permits assignment expressions using array operands.  For example, suppose that a program contains 

the following statements: 

int [] original = {11, 22, 33, 44, 55}; 

int [] copy; 

copy = original; 

Although one might expect the third statement to define copy as a distinct copy of original, this is not 

what happens.  The reason is that original and copy are both handles for array objects and are not 

arrays themselves.  To see the difficulty, suppose we visualize the effect of the first statement as follows: 

 
 

 
Once copy has been declared, then the third (assignment) statement simply copies the address from the 

handle original into the handle copy, which we might picture as 

 

 

 

 

Thus, original and copy both refer to the same array object.   

If the programmer was relying on the two handles referring to distinct arrays, then this represents a logic 

error – any change to the array referred to by original will simultaneously change the array referred to by 

copy.  Therefore, the assignment operator should never be used to make a copy of an array. 

Array Cloning 

There are times when we need to create separate copies of Java objects. To support this, most predefined 

Java objects — arrays, in particular — have a clone() method that tells an object to make a copy of 

itself and return the address of the copy.  To illustrate, if copy and original are handles for integer 

arrays as before, 

original 

11 

[0] [1] [2] [3] 

22 33 44 

[4] 

55 

original 

11 

[0] [1] [2] [3] 

22 33 44 

[4] 

55 

copy 



8-10 

 

int [] original = {11, 22, 33, 44, 55}; 

int [] copy; 

and we want copy to be a distinct copy of original, we can write: 

copy = original.clone(); 

The clone() method makes a distinct copy of the array original  We can picture the result as follows: 

 
 

 

 

 
The clone() method can thus be used to make a distinct copy of an array.  

It is important to note, however, that, for the sake of efficiency, clone()makes a simple copy  of the 

object’s memory.  For arrays of primitive types such as original, this produces a completely distinct 

copy but not for arrays of reference types.  To illustrate, consider the following code segment, which 

manipulates an array of StringBuffer objects: 

 StringBuffer[] names = { new StringBuffer("Abby"),  

                          new StringBuffer("Bob"), 

                          new StringBuffer("Chris") }; 

 StringBuffer[] copy = names.clone(); 

 

In this example, we can picture the objects produced by these statements as follows: 

 

 

 

 
 

 

Here, the clone() method does makes a copy of the array names, but it is not a completely distinct 

copy.  The reason is that names is an array of StringBuffer values, meaning its elements are StringBuffer 

handles.  StringBuffer is similar to String except that where modifications to String objects 

result in the creation of a completely new string object, modifications of StringBuffer objects 

modify the existing StringBuffer object. When names is cloned, it makes a copy of itself by a 

simple copy of its memory.  This creates a second array whose elements are copies of its elements, and 

since those elements are String handles containing addresses, the String handles in this copy 

contain the same addresses.  Put differently, the elements of names and the elements of copy are 

different handles for the same sequence of values.  Because it copies handles without copying the objects 

to which they refer, the clone() method’s operation is sometimes referred to as a shallow copy 

operation. 

original 

11 

[0] [1] [2] [3] 

22 33 44 

[4] 

55 

copy 

11 

[0] [1] [2] [3] 

22 33 44 

[4] 

55 

names 

Abby Bob Chris 

[0] [1] [2] 

copy 

[0] [1] [2] 



8-11 

 

In some situations, shallow copying can lead to a problem.  The most common problem occurs if we 

change the objects to which the handles in a shallow copy refer.  For example, if we use names to change 

the 'o' in "Bob" to 'u', 

 names[1].setCharAt(1, 'u'); 

this change simultaneously affects the StringBuffer to which both names[1] and copy[1] 

refer: 

 

 

 

 

 

 

 

 

To avoid such problems, we can write our own deep copying method.  To illustrate, here is such 

a method for an array of StringBuffer objects: 

public static StringBuffer [] deepCopy(StringBuffer [] original) { 

  StringBuffer [] result = new StringBuffer[original.length]; 

 

  for (int i = 0; i < original.length; i++) 

    result[i] = original[i].clone(); 

 

  return result; 

} 

 

There are many situations in which the clone() method’s shallow copy is perfectly adequate, however.  

For example, if we assign names[1] the value "Bill", copy[1] will still refer to "Bob": 

 

 

 

 

 

 

Array Equality 

Java’s Object class defines an equals() message that can be sent to an array object: 

 if (a1.equals(a2) ) // ... 

Unfortunately, this method simply compares the addresses in the handles a1 and a2.  If they refer to the 

same object, then it returns true; otherwise it returns false.  To actually compare the elements of two 

arrays, we must write our own method.  To illustrate, the following class method equals()can be used 

to compare the elements of two arrays of double values,  array1 and array2: 

 

names 

Abby Bob Chris 

[0] [1] 

copy 

[0] [1] [2] 

Bill 

[2] 

names 

Abby Bub Chris 

[0] [1] 

[2] 

copy 

[0] [1] [2] 

[2] 



8-12 

 

public static boolean equals(double[] array1, double[] array2) { 

  if (array1.length == array2.length) { 

    for (int i = 0; i < array1.length; i++) { 

      if (array1[i] != array2[i]) { 

        return false; 

      } 

    } 

    return true; 

  } else { 

    return false; 

  } 

} 

The method first checks whether the lengths of the two arrays are the same; if not it returns false.  

Otherwise, it iterates through the index values, comparing the two arrays an element at a time.  The 

method returns false if a mismatch is found, but returns true if it makes it through all index values without 

finding a mismatch. 

A method to determine if two arrays of String values are equal uses the equals() method in place of 

== to compare the array elements.  This is because the elements of the array are handles for String 

values, and the String class supplies its own definition of equals() to properly compare String 

values. 

public static boolean equals(String[] array1, String[] array2) { 

  if (array1.length == array2.length) { 

    for (int i = 0; i < array1.length; i++) { 

      if (!(array1[i].equals(array2[i]))) { 

        return false; 

      } 

    } 

    return true; 

  } else { 

    return false; 

  } 

} 

A similar method can be used to compare arrays whose elements are of other reference types that define 

equals() properly.   

8.2.4. Example Revisited 

To build the chapter example, we must represent the name and life expectancy value for each country in 

our data set. Given that country names are strings and life expectancy values are floats, we will need to 

use two separate arrays to represent this data. To do this, we’ll use the two arrays presented in this 

section: expectancyCountries, a string array, and expectancyValues, a float array. To keep 

track of the correspondence between the name of the county and the expectancy value for that country, we 

will make sure that the indexes of corresponding data match up properly. For example, 

expectancyCountries[0] should contain the name of the country whose expectancy value is 

stored in expectancyValues[0]. In this way, the index 0 co-indexes the name and value for one 

country.  



8-13 

 

We must also be able to print our data in a consistent manner.  Our ultimate goal is to produce a bar chart 

such as the one shown in our original sketch shown in Figure 8-1. In this iteration, we’ll satisfy ourselves 

by simply printing the names and values for each country without the bars. We’ll also include the 

aggregate statistics. To achieve this preliminary goal, we can use the following algorithm. 

Given:  

 expectancyCountries is declared as an array of strings and is initialized with a list of 

country names. The index values correspond with the values of the expectancy value array. 

 expectancyValues is declared as an array of floats and initialized with a list of 

expectancy values. The index values correspond with the values of the country name array. 

 

Algorithm: 

1. Print the table header. 

2. Set sum = 0; 

3. Set maximum = to a really small number. 

4. Set minimum = to a really big number. 

5. Repeat for a counter i ranging from 0 to the number of countries: 

a. Print a row in the table, with the current country name and expectancy value (that is, 

the ith country name and value). 

b. Set sum = sum + the current expectancy value. 

c. If the current expectancy value > maximum: 

i. Set maximum = the current expectancy value. 

d. If the current expectancy value < minimum: 

i. Set minimum = the current expectancy value. 

6. Print the summary statistics: average (i.e., sum / number of countries), maximum and  

minimum. 

 

This algorithm combines four basic tasks all in one loop. The main task is that of printing the table, which 

the algorithm does using a counting for loop that goes through the countries one at a time, printing one 

table row on each pass (steps 5 and 5.a).  Each time through the loop, the algorithm refers to the “current” 

country name or expectancy value; this refers to the ith name or value in the respective arrays.  
 

The loop is also computing statistics as it goes through. It computes the average expectancy value using 

the same algorithm shown in the section above (see the computeAverage() method). It’s also 

searching for the maximum and the minimum life expectancy values. It does this by maintaining a 

maximum (and minimum) value “seen so far”.  Each time through the loop, it updates these values based 

on whether the current value is larger (or smaller) than the current value seen so far. All three of these 

accumulator algorithms assume that their accumulators have been initialized properly before the loop 

starts. The sum accumulator must be initialized to 0, which ensures that sum accumulated by the loop is 

accurate. The maximum accumulator must be set to some really small number, which ensures that the 

current value seen the first time through the loop will always be larger than the maximum value seen so 

far. The computation of the minimum value is handled similarly. 
 

The following code implements this algorithm. 



8-14 

 

/** 

 * ExpectancyTable displays a textual table of part of GapMinder's  

 * life-expectancy data for 2007 (see http://www.gapminder.org/).  

 * 

 * @author kvlinden, snelesen 

 * @version Fall, 2011 

 */ 

final String[] expectancyCountries = { "China", "France", "Russia", "UK", 

"USA" }; 

final float[] expectancyValues = { 72.961, 80.657, 65.475, 79.425, 78.242 }; 

final String year = "2007", source = "GapMinder.com, 2009"; 

 

void setup(){ 

// Print the table header. 

println("Average Life Expectancy in Years (" + year + ")"); 

 

// Initialize the aggregator values. 

float sum = 0.0, maximum = Float.MIN_VALUE, minimum = Float.MAX_VALUE; 

 

for (int i = 0; i < expectancyCountries.length; i++) { 

  // Print the next table row. 

  print(expectancyCountries[i] + ": " + expectancyValues[i] + "\n"); 

   

  // Accumulate the sum of the expectancy values. 

  sum += expectancyValues[i]; 

   

  // Update the maximum value seen so far. 

  if (expectancyValues[i] > maximum) { 

    maximum = expectancyValues[i]; 

  } 

   

  // Update the minimum value seen so far. 

  if (expectancyValues[i] < minimum) { 

    minimum = expectancyValues[i]; 

  } 

} 

 

// Print the aggregate statistics. 

println("Average: " + sum / expectancyCountries.length); 

println("Maximum Value: " + maximum); 

println("Minimum Value: " + minimum); 

println("Data Source: " + source); 

} 

This program prints the following simple table in the text output panel. 

Average Life Expectancy in Years (2007) 

China: 72.961 

France: 80.657 

Russia: 65.475 

UK: 79.425 

USA: 78.242 

Average: 75.352005 

Maximum Value: 80.657 

Minimum Value: 65.475 

Data Source: GapMinder.com, 2009 



8-15 

 

This code represents its raw data using two arrays, expectancyCountries and 

expectancyValues, and initializes them using array initializers. It uses the Float library constants 

Float.MIN_VALUE and Float.MAX_VALUE in the maximum and minimum value computation 

described above; these values are set automatically to represent the smallest (largest) float values. 

8.3. Array Topics 

There are a number of important problems in computing that can be addressed using arrays. This section 

introduces one of these topics: search.  

8.3.1. Searching 

One important computational problem is searching a collection of data for a specified item and retrieving 

some information associated with that item.  For example, one searches a telephone directory for a 

specific name in order to retrieve the phone number listed with that name.  We consider two kinds of 

searches, linear search and binary search. 

Linear Search 

A linear search begins with the first item in a list and searches sequentially until either the desired item is 

found or the end of the list is reached.  The following algorithm specifies a method that uses this approach 

to search a list of n elements stored in an array, list[0], list[1], . . ., list[n – 1] for value.  It returns the 

location of value if the search is successful, or the value -1 otherwise. 

Linear Search Algorithm: 

1. Receive a non-null list of values and a target value. 

2. Loop for each element in list 

a. If value equals list[i] then 

i. Return i. 

3. Return -1. 

Note that this algorithm does more than simply say that a matching value was found or not found in the 

given list. It returns the index at which the value was found in the list or returns the value -1 to indicate 

that a matching value was not found. 

The following code implements this algorithm in Java. 

 public static int linearSearch(int[] list, int value) { 
  for (int i = 0; i < list.length; i++) { 
   if (value == list[i]) { 
    return i; 
   } 
  } 
  return -1; 
   } 

This linear search method can be invoked as shown in this example code segment, which searches the 

given list of integers for the value 100: 



8-16 

 

Code Output 

int[] list = { 7, 1, 9, 5, 11 }; 
if (linearSearch(list, 100) > -1) { 
 System.out.println("Item found"); 
} else { 
 System.out.println("Item not found"); 
} 

Item not found 

Note that the algorithm and implementing code assume that the list to be searched is not null. Passing a 

null list, as in linearSearch(null, 100) results in a null-pointer exception. Given that this search 

method cannot control how it is called, it would be wise to modify the search method as follows: 

 public static int linearSearch(int[] list, int value) { 
  if (list == null) { 
   return -1; 
  } 

  for (int i = 0; i < list.length; i++) { 
   if (value == list[i]) { 
    return i; 
   } 
  } 
  return -1; 

} 

This version of the method checks the validity of the list before starting the search and, if the list is null, 

indicates that the value is not found by returning -1. This is more robust because it anticipates potentially 

bad input and responds appropriately. 

Binary Search 

If a list has been sorted, binary search can be used to search for an item more efficiently than linear 

search.  Linear search can require up to n comparisons to locate a particular item, but binary search will 

require at most log2n comparisons.  For example, for a list of 1024 (= 210) items, binary search will 

locate an item using at most 10 comparisons, whereas linear search may require 1024 comparisons. 

In the binary search method, we first examine the middle element in the list, and if this is the desired 

element, the search is successful.  Otherwise we determine whether the item being sought is in the first 

half or in the second half of the list and then repeat this process, using the middle element of that list. 

To illustrate, suppose the list to be searched is as shown here in the left-most column: 

 

 

 

 

 

1995
2002
2335
2665
3103

1279
1331
1373
1555
1824
1898
1995
2002
2335
2665
3103

1995
2002



8-17 

 

If we are looking for 1995, we would first examine the middle number 1898 in the sixth position.  

Because 1995 is greater than 1898, we can disregard the first half of the list and concentrate on the second 

half (see column two). The middle number in this sub-list is 2335, and the desired item 1995 is less than 

2335, so we discard the second half of this sub-list and concentrate on the first half (see column three). 

Because there is no middle number in this sub-list, we examine the number immediately preceding the 

middle position —the number 1995 — and locate our number. Note that this approach only works if the 

list is sorted. 

The following algorithm specifies this binary search approach for a list of n elements stored in an array, 

list[0], list[1], . . ., list[n – 1] that has been ordered so the elements are in ascending order.  If value is 

found, its location in the array is returned; otherwise the value n is returned. 

Binary Search Algorithm: 

1. Receive a non-null, sorted list of values and a target value. 

2. If list is null 

a. Return -1. 

3. Set first = 0 and last = length of the list - 1. 

4. Loop while first <= last 

a. Set middle to the integer quotient (first + last) / 2. 

b. If value < list[middle] then 

i. Set last = middle – 1; 

c. else if value > list[middle] then 

i. Set first = middle + 1; 

d. else 

i. Return middle; 

5. Return -1. 

Note that this algorithm adds the safety check for a null list in step 3. The following code implements this 

algorithm in Java: 

 public static int binarySearch(int[] list, int value) { 
  if (list == null) { 
   return -1; 
  } 
 

  int first = 0; 
  int last = list.length - 1; 
 

  while (first <= last) { 
   int middle = (first + last) / 2; 
   if (value < list[middle]) { 
    last = middle - 1; 
   } else if (value > list[middle]) { 
    first = middle + 1; 
   } else { 
    return middle; 
   } 
  } 
  return -1;   
 } 



8-18 

 

Given the same arguments, binarySearch() returns the same answers as linearSearch(), but it does it more efficiently. 

This may not be noticeable for small lists, but as the lists increase in size, the efficiency will become more and more 

noticeable.  

8.4. Files 

In the previous section, we hard-coded the data as array initializer values in the program itself. While this 

approach works, it also creates a number of problems. First, the program will only graph the particular set 

of raw data that it hard-codes, which makes it impossible to reuse the program for other data sets. Second, 

changing the data values for later use would require repeated rewriting and recompiling of the program, 

which is unacceptably tedious. 

A better approach to this data management task is to separate the data from the program, storing the data 

in a data file and the program in a program file, and designing the program to read its data from the data 

file. With this approach, a single program can be used on multiple data files, and the data values can be 

changed and saved over time. 

Files are classified by the kind of data stored in them. Files that contain textual characters (such as the 

source code for programs or numbers entered with a text editor) are called text files. Files that contain 

non-textual characters (such as the binary code for a compiled program or control codes for a word 

processor file) are called binary files.  

This section discusses Processing’s capabilities for reading and writing text files.  

8.4.1. Reading from Files 

In Processing, a program reads data from a text file using the loadStrings() method. Consider the 

task of reading a list of country names from a file. The following diagram shows the data file 

(countries.txt) on the left, the program in the middle and the output on the right. 

 

The data file, countries.txt, is a simple text file that contains one country name per line. It is 

generally stored in the data sub-directory. The program uses the loadStrings() method to load the 

lines of the input file into an array of strings.  loadStrings() automatically reads through the input 

file and creates an array of strings with one array element per line in the file. The length of the resulting 

array equals the number of lines in the file. The program then prints the countries array to the text 

output screen. You can see that when Processing prints an array, it automatically includes the array 

indexes. 



8-19 

 

In cases where the input file includes more than one atomic value on a given line, the program must split 

up the input line. In the following example, the country names are listed on a single line in the file.  

 

This program uses loadStrings() again but because the input file includes all the country names on 

one line, loadStrings() produces an array of strings with only one element at index 0 whose value 

is the string: 

 "China, France, Russia, UK, USA" 

To work with the individual country names, the program must split this one string value into separate 

country names. It does this using the split() method, which takes as arguments: (1) the line to be 

split, countryLines[0]; and (2) a string specifying the characters used to separate the country names, 

", ".   The separating string is known as a delimiter. This method creates an array of five strings, one 

for each country with the delimiting characters removed. The result is the same array of country names 

produced in the last example. 

Because these input files are text files, the only type of data that Processing can read from them is string 

data. To read numeric values from a text file, a program must convert the string value it reads from the 

file, say “72.961”, into the corresponding numeric value for use in numeric computations, 72.961. The 

following example reads the lines from the file and constructs arrays for the country names and the 

numeric values for those countries. 



8-20 

 

 

This program declares three arrays, a string array for the lines in the file (countryLines), a second 

string array for the country names (countryNames) and a float array for the expectancy values 

(countryValues). As with the previous examples, it starts by calling loadStrings() to read the 

lines of the file into an array of strings. This results in an array of 5 strings, the first of which has the 

following value: 

"China 72.961" 

In order to work with the name as a string and the expectancy value as a float, the program must now 

separate the name string from the float value. This process is parsing and the individual elements on the 

lines being parsed are called tokens. In this example, the parsing process will produce data for five 

countries, with two tokes for each country: a name string and a float value. The program uses the new 

operator to create an empty array for the names and an empty array for the values. Both of these arrays 

have a length set to the number of lines read from the file. This way, we can add or remove countries 

from the file and the program will automatically handle the changed number of country lines.  

The program then loops through the input and divides each line into the country name portion and the 

numeric value portion. It does this using the split() method discussed in the previous example. In this 

case, split() returns an array of two tokens (tokens) , the first of which is a name string (e.g., 

“China”) and the second of which is the expectancy value for that country (e.g., “72.961”).  The program 

stores the name directly into the array of country names. It must then convert the string version of the 

numeric value (e.g., “72.961”) into the corresponding floating point value (e.g., 72.961); it does this using 

the float() conversion method and then loads that converted value into the array of expectancy values. 

The program finishes by printing the data on the text output window. This output data looks very much 

like the input file, but the big difference is that the program has parsed tokens on each line in the file into 



8-21 

 

values of the appropriate type. This allows the program work with them separately, say to compute the 

average of the float values or to alphabetize the country names. 

8.4.2. Example Revisited 

The chapter example can be improved by storing its raw data in a text file. The user could create this text 

file using a simple text editor or some other tool and then run the program to produce the bar graph 

output. Here is the data file for this iteration, which includes the year and citation for the data as the first 2 

lines. 

Data file: expectancy.txt 

2007 

GapMinder.com, 2009 

China 72.961 

France 80.657 

Russia 65.475 

UK 79.425 

USA 78.242 

The process for reading the data from this file is discussed in this section so we will not include an 

algorithm here. The following code, when combined with the chart printing code from the last iteration, 

produces the same output table. 

Program file: ExpectancyTable.pde 

/** 

 * ExpectancyTableFile displays a textual table of part of  

 * GapMinder's life-expectancy data for 2007 (see http://www.gapminder.org/). 

 * This version reads its data from a file. 

 * 

 * @author kvlinden, snelesen 

 * @version Fall, 2011 

 */  

final String filename = "expectancy.txt"; 
 

void setup(){ 

String[] expectancyLines, expectancyCountries; 

float[] expectancyValues; 

String year, source; 
 

// Load the data from a file 

expectancyLines = loadStrings(filename); 

expectancyCountries = new String[expectancyLines.length - 2]; 

expectancyValues = new float[expectancyLines.length - 2]; 

String[] tokens; 

year = expectancyLines[0]; 

source = expectancyLines[1]; 

for (int i = 2; i < expectancyLines.length; i++) { 

  tokens = split(expectancyLines[i], " "); 

  expectancyCountries[i - 2] = tokens[0]; 

  expectancyValues[i - 2] = float(tokens[1]); 

   } 
 

   // Print the table as described in the previous iteration... 

} 



8-22 

 

This program produces the same output as shown in the previous iteration. The key difference is that it 

reads its raw data, including the year and data source, from a text file rather than hard-coding it in the 

program itself. The file input code uses the techniques described in the previous section to load country 

names and expectancy values from the expectancy.txt file. This method treats the first two lines of 

the text file as the year and the data source, and includes these values in the graphical output. 

8.4.3. Writing to Files 

In Processing, a program writes data to a text file using the saveStrings() method. This method can 

be viewed as the inverse of the loadStrings() method in that it writes the values in an array of 

strings out to a file rather than reading them in from the file. The following program writes a hard-coded 

list of country names to a file. 

 

This program saves the countries array in the specified file, one element per line. Note that while 

Processing automatically looks for input files either in the data sub-directory or the program directory 

itself, it doesn’t automatically save output files there so the program must add the file path relative to the 

program directory, e.g., data/, to the output filename. Note also that if a file with the given name 

already exists, Processing will overwrite it. 

saveStrings() simply saves the elements of an array of strings, one per line, in a file. If a program 

wants to combine more than one data value per line, or to include numeric data in its output, then it must 

create an array of strings matching the format it desires. The following program starts with our country 

name and expectancy value arrays and produces an output file with one line per country. 

 

This program combines the raw data stored in its countryNames and countryValues arrays, and 

saves the resulting lines in countryLinesOut.txt. It uses the string concatenation operator (+) to 

create a string combining the name and a string version of the numeric value. Note that while in parsing, 

our program needed to explicitly convert a string value into a float value, Processing’s concatenation 



8-23 

 

operator automatically converts floats into strings. We’ve used this feature when printing numeric values 

to the text output panel, and it is useful again here for writing to a text file. 

8.4.4. Example Revisited 

In the previous iterations, the chapter example code assumes that the country names in the data files are 

consistent. In practical information systems this is rarely the case. Data comes from a variety of sources 

(e.g., databases, spreadsheets, web sites) with myriad formats and information systems programmers 

spend considerable effort systematizing data formats and cleaning up incorrect or missing data. This task, 

commonly known as data cleansing, is critical to the correct operation of data processing programs. 

For example, consider the name of the country known above as “China”. Will the data represent it as 

“China”, “The People’s Republic of China”, “China, People’s Republic of”, “PRC”, or “Zhong Guo”? 

This naming problem is significant enough that the International Standards Organization (ISO) has 

systematized a two-character coding scheme for country names. China is unambiguously coded as “CN”, 

France as “FR” and so forth. This standard allows our chapter prototype to store its data in a more 

systematized format, but this format is based on a country code that is harder for users to read. To address 

this problem, this iteration writes a utility program that reads a raw country data file that uses the ISO 

country code and writes a new data file that is compatible with the chapter example prototype developed 

in the last section, including the more readable ISO country name, as shown here: 

 

We know how to read the data in these two input files into arrays, but we now need to do a sort of 

“lookup” task in which we take the country code from countryData.txt and replace it with the 

corresponding country name from countryCodes.txt.  This is called search. The following 

algorithm specifies a search method that looks through the country codes loaded from 

countryCodes.txt to find the name of a country with a particular code.  

Given:  

 countryCodeLines is set to an array of strings of the form "CN China" where the first 

two characters are the ISO country code, then there is a space followed by the full name of 

the country. 

Algorithm (for findCountryName()): 

1. Receive from the calling program a string countryCode representing the ISO code of a 

country and an array countryCodeLines representing a list of country code-name pairs 

as specified above. 

2. Repeat for a counter i ranging from 0 to the number of country codes: 

a. If countryCode = the current country code: 

i. Return the current country name. 

3. Return countryCode. 



8-24 

 

 

This search algorithm looks for the given country code in the given list of code-name pairs. As soon as it 

finds a match, it terminates its search loop by returning the country name. If it loops all the way through 

the code-name pairs without finding a match, it returns the original country code as a last resort. The 

following program includes an implementation of this algorithm. 

/** 

 * CountryNameConversion replaces the ISO country code in  

 * countryData.txt with the official country name specified 

 * for that code in countryCodes.txt. 

 * 

 * @author kvlinden, snelesen 

 * @version Fall, 2011 

 */ 

  

void setup() { 

  String[] countryISOCodes, countryData, countryOutputLines; 

  countryISOCodes = loadStrings("countryCodes.txt"); 

  countryData = loadStrings("countryData.txt"); 

  countryOutputLines = new String[countryData.length]; 

  String[] tokens; 

  for (int i = 0; i < countryData.length; i++) { 

    tokens = split(countryData[i], " "); 

    countryOutputLines[i] =  

        findCountryName(tokens[0], countryISOCodes) + " " + tokens[1]; 

  } 

  saveStrings("data/countryDataOut.txt", countryOutputLines); 

} 

 

/** 

 * Finds the country name associated with a given country code 

 * 

 * @param countryCode - the country code to search for 

 * @param countryCodeLines - the table of code-name pairs 

 * @return the country name or the original country code  

 *         if no name is found. 

 */ 

String findCountryName(String countryCode, String[] countryCodeLines) 

{ 

  for (int i = 0; i < countryCodeLines.length; i++) { 

    if (countryCodeLines[i].substring(0,2).equals(countryCode)) { 

      return countryCodeLines[i].substring(3,  

                                       countryCodeLines[i].length()); 

    } 

  } 

  return countryCode; 

} 

 

This program reads two files: countryData.txt, which includes a standardized data format that 

might be found in a common data repository, and countryCodes.txt, which includes a mapping 



8-25 

 

from the ISO country codes to more readable country names for the bar graph output. The program then 

uses the techniques discussed in the previous section to create a new output string array and fills it with 

the same data loaded from countryData.txt except that it replaces the country code with the more 

readable name found in countryCodes.txt. The resulting file is compatible with the bar graph 

program built in the last iteration. 

This program introduces methods to the simpler code used in the previous iterations. It does this so that it 

can encapsulate the findCountryName() method discussed above. This method uses string 

manipulation methods to break up the country code strings.  As discussed above, the county code strings 

are of the form "CN China" so the following Boolean expression determines whether the given 

countryCode is equal to the ith country code string. 

 

This is not an efficient way to search large lists, but it works well enough for this chapter. 

8.5. Multi-Dimensional Arrays 

The previous sections work with arrays that represent sequences of homogenously-typed values. Each 

array can be viewed as storing a single, one-dimensional “row” of data. Processing also allows 

programmers to create multi-dimensional arrays. For example, a two-dimensional array would have 

“rows” and “columns”, a three-dimensional array would have “rows”, “columns” and “ranks”, and so 

forth.  

This section describes how to declare, initialize and work with multi-dimensional arrays, focusing in 

particular on two-dimensional arrays. 

8.5.1. Declaring and Initializing Multi-Dimensional Arrays 

Processing implements a two-dimensional array as an “array of arrays”.  The following program declares 

and initializes a two-dimensional array of integers: 

int[][] myTable = new int[3][3]; 

 

This code specifies two sets of square braces for both the type (int[][]) and the constructor (new 

int[3][3]), which tells processing to create an array of arrays of integers. The following code 



8-26 

 

constructs the same data structure but initializes it with data representing the current state of a game of 

Tic-tac-toe: 

int[][] board = { { 1, 0, 2 },  

                  { 0, 1, 2 }, 

                  { 2, 0, 1 } }; 

In this board, 0 represents an open cell, 1 represents player X and 2 represents player O, so we can see 

that player 1 (X) has won the game. This data structure can be viewed as follows: 

 

The board object is an array of length 3 whose elements are all arrays of length 3. The one-dimensional 

array subscript operator works as it did before: board[0] refers to the first element of the board array, 

which is itself a three-element array with values 1, 0, and 3; board[0][0] refers to the first element of 

board[0], which is an integer with value 1. The pattern for using this operator to access the element of 

the array anArray at row row and column column is shown here: 

 anArray[row][column] 

Processing supports higher dimension arrays by adding more square bracket pairs. 

8.5.2. Working with Multi-Dimensional Array Elements 

In the last section, we used a counting for loop to access the elements of one-dimensional arrays. In this 

section, we will use two nested for loops to access the elements of a two-dimensional array.  For 

example, the following method initializes every cell in a board to 0 : 

void initializeBoard(int[][] board) { 

  for (int i = 0; i < board.length; i++) { 

    for (int j = 0; j < board[i].length; j++) { 

      board[i][j] = 0; 

    } 

  } 

} 

This method uses two nested for loops to loop through the rows (index i) and columns (index j). The 

outer loop visits rows 0 through board.length, which is the length of the board array (3 for Tic-tac-

toe boards). The inner loop visits columns 0 through board[i].length, which is the length of the 

current row at that point in the outer loop.  



8-27 

 

The following code draws a Tic-tac-toe board consistent with the player tokens specified in the board 

array parameter.  

Code Output 

public static void printBoard(int[][] board) { 
 for (int i = 0; i < board.length; i++) { 
  for (int j = 0; j < board[i].length; j++) { 
   if (board[i][j] == 1) { 
    System.out.print("X "); 
   } else if (board[i][j] == 2) { 
    System.out.print("O "); 
   } else { 
    System.out.print("  "); 
   } 
  } 
  System.out.println(); 
 } 
} 

X   O  
  X O  
O   X 

This code uses two nested for loops again to visit each board cell, and then uses an if statement to 

determine which player token, if any, to write in a given cell. 

Higher dimensional arrays are processed in an analogous manner, adding one nested for loop for each 

new dimension. 

Processing’s loadStrings() and saveStrings() methods are designed for loading and saving 

one-dimensional string arrays.  Handling higher-dimensional arrays requires special programming to split 

file lines apart into separate data values; this was demonstrated in the previous section. 

8.5.3. Example Revisited 

The previous iterations on the chapter example have displayed life expectancy data for a single year 

(2007). We can represent the data over time as well, which requires the following two-dimensional array: 

float[][] expectancyValues =  

   //  China   France  Russia  UK      USA 

   { { 70.426, 78.640, 66.790, 77.218, 76.810 }, // 1997 

     { 72.028, 79.590, 65.010, 78.471, 77.310 }, // 2002 

     { 72.961, 80.657, 65.475, 79.425, 78.242 }  // 2007 

      }; 

In this two-dimensional array, each row represents the life expectancy values for each of the five 

countries in a given year and each column represents the values for a given country over time. For 

example, expectancyValues[1][2] represents the life expectancy for infants born in Russia in 

1997 (65.010). 



8-28 

 

The following code segment reads the names of the countries, the years and the raw data values. 

 

Here, the program assumes that the data is formatted properly. The data values are stored in two 

dimensional format in the text file (expectancyValues.txt) with one row year and one column per 

country. The number of rows much match the number of years (expectancyYears.txt) and the 

number of columns must match the number of countries (expectancyCountries.txt). You can see 

in the data that four of the five the countries increased their average life expectancy in each year 

represented in the data (Russia decreased from 1997 to 2002). 



8-29 

 

8.6. Revisiting the Example 

As a final iteration of the chapter example, we introduce graphical bar graphing and animate the bar graph 

to show the changes of the data over time. Each frame in the animation shows the full bar chart at a 

particular year and the animation moves from the years furthest in the past to more recent years. 

 
 

 
 
final String SOURCE = "GapMinder.com, 2009"; 

final int BAR_HEIGHT = 25, BAR_WIDTH_UNIT = 3, LABEL_WIDTH = 50, MAX_AGE = 

90, HEADER_SIZE = 25, FOOTER_SIZE = 100; 

 

int frameCount; 

PFont headerFont, font; 

String[] expectancyLines, expectancyCountries, expectancyYears; 

float[][] expectancyValues; 

 

void setup() { 

  loadExpectancyData("expectancyValues.txt",  

                     "expectancyCountries.txt",  

                     "expectancyYears.txt"); 

  int width = BAR_WIDTH_UNIT * MAX_AGE + LABEL_WIDTH + 1; 

  int height = BAR_HEIGHT * expectancyCountries.length + FOOTER_SIZE; 

  size(width, height); 

  headerFont = loadFont("Calibri-Bold-14.vlw"); 

  font = loadFont("Calibri-12.vlw"); 

  frameRate(1); 

  frameCount = 0; 

} 



8-30 

 

 

void draw() { 

  background(255); 

  drawHeader("Average Life Expectancy in Years (" + 

             expectancyYears[frameCount] + ")"); 

  drawBarGraph(expectancyValues[frameCount], expectancyCountries); 

  drawSummaryStatistics(expectancyValues[frameCount]); 

  frameCount++; 

  if (frameCount >= expectancyYears.length) { 

    noLoop(); 

  } 

} 
 

void drawHeader(String headerText) { 

  textFont(headerFont); 

  fill(0); 

  textAlign(LEFT, TOP); 

  text(headerText, 10, 5); 

} 
 

void drawBarGraph(float[] values, String[] labels) { 

  textFont(font); 

  textAlign(RIGHT, TOP); 

  for (int i = 0; i < values.length; i++) { 

    // Draw the bar 

    fill(234, 189, 90); 

    rect(LABEL_WIDTH, i * BAR_HEIGHT + HEADER_SIZE,  

         values[i] * BAR_WIDTH_UNIT, BAR_HEIGHT); 

    // Write the label and numeric value. 

    fill(0); 

    text(labels[i], LABEL_WIDTH - 5, i * BAR_HEIGHT + 5 + HEADER_SIZE); 

    text(values[i], LABEL_WIDTH + values[i] * BAR_WIDTH_UNIT - 5,  

         i * BAR_HEIGHT + 5 + HEADER_SIZE); 

  } 

} 
 

void drawSummaryStatistics(float[] values) { 

  textFont(font); 

  fill(0); 

  textAlign(LEFT, TOP); 

  text("Average: " + computeAverage(values),  

       LABEL_WIDTH, height - FOOTER_SIZE + HEADER_SIZE + 12); 

  text("Maximum Value: " + computeMaximum(values),  

       LABEL_WIDTH, height - FOOTER_SIZE + HEADER_SIZE + 24); 

  text("Minimum Value: " + computeMinimum(values),  

       LABEL_WIDTH, height - FOOTER_SIZE + HEADER_SIZE + 36); 

  text("Data Source: " + SOURCE, LABEL_WIDTH,  

       height - FOOTER_SIZE + HEADER_SIZE + 55); 

} 
 

float computeAverage(float[] values) { 

  if ((values == null) || (values.length <= 0)) { 

    return 0.0; 

  } 

  float sum = 0.0; 

  for (int i = 0; i < values.length; i++) { 

    sum += values[i]; 

  } 

  return sum / values.length; 

} 



8-31 

 

float computeMaximum(float[] values) { 

  if ((values == null) || (values.length <= 0)) { 

    return 0.0; 

  } 

  float maximum = Integer.MIN_VALUE; 

  for (int i = 0; i < values.length; i++) { 

    if (values[i] > maximum) { 

      maximum = values[i]; 

    } 

  } 

  return maximum; 

} 

 

float computeMinimum(float[] values) { 

  if ((values == null) || (values.length <= 0)) { 

    return 0.0; 

  } 

  float minimum = Integer.MAX_VALUE; 

  for (int i = 0; i < values.length; i++) { 

    if (values[i] < minimum) { 

      minimum = values[i]; 

    } 

  } 

  return minimum; 

} 

 

void loadExpectancyData(String valuesFilename, String countriesFilename, 

String yearsFilename) { 

  expectancyCountries = loadStrings(countriesFilename); 

  expectancyYears = loadStrings(yearsFilename); 

  expectancyLines = loadStrings(valuesFilename); 

  expectancyValues = new 

float[expectancyLines.length][expectancyCountries.length]; 

  String[] tokens; 

  for (int i = 0; i < expectancyLines.length; i++) { 

    tokens = split(expectancyLines[i], " "); 

    for (int j = 0; j < tokens.length; j++) { 

      expectancyValues[i][j] = float(tokens[j]); 

    } 

  } 

} 

 

This code is largely copied from the previous iterations, with two significant additions: 

 The drawBarGraph() method formats the raw data in the form of a bar graph.  

 The draw() method runs repeatedly based on the frameCount variable.  

The three particular frames shown above show the effect of the Rwandan civil war (1990-1993) on the 

average life expectancy in the early 1990s. 


