
6-1

Chapter	
 6.	
 	
 Transition	
 to	
 Java	

Not all programming languages are created equal. Each is designed by its creator to achieve a particular
purpose, which can range from highly focused languages designed for a particular activity or domain to
more general-purpose languages designed to support a broad range of activities in a variety of domains.
Processing is a more focused language. Its creators, Casey Reas and Ben Fry, built the Processing
development environment to support the electronic arts and visual design communities by providing easy-
to-use support for two and three-dimensional graphics, typesetting and animation. Initial results show that
Processing has been successful in achieving this goal.1 The first half of this text has explored these areas
of the Processing language in some detail.

The second portion of this text begins to address the variety of activities and domains found in the
broader field of computing. In particular, it will consider the development of larger applications that
address domains outside the area of the electronic arts and visual design. Such applications, which might
include dozens or even hundreds of classes and require support for tasks other than graphics, typesetting
and animation, stretch the limits of the Processing language and development environment beyond what
they were designed to support.

To support these larger applications, this chapter turns to the Java programming language and its more
powerful development environments. Java is a general-purpose language whose creators, Patrick
Naughton, James Gosling, Mike Sheridan and others at Sun Microsystems, envisaged a language that
would support a wide variety of activities in a cross-platform environment. To achieve these goals, they
designed an extensible language based on a virtual-machine architecture. Java has been wildly successful
in achieving this goal.2 It has been ported to a wide variety of computing platforms and has attracted the
development of numerous, enterprise-level development environments. Indeed, the Processing language
itself is built on Java, which makes our “transition” from Processing to Java less like a transition and
more like a natural next step.

This chapter introduces the Java programming language.

6.1. Example:	
 A	
 Tip	
 Calculator	

To this point in the text, our examples have been primarily graphical in nature. This is in keeping with the
nature of Processing, which casts every problem as a graphical problem. If, on the other hand, we’re
addressing a non-graphical problem, say the desire to have a simple calculator that takes a restaurant bill
and automatically computes an appropriate tip, we’re likely to find Processing’s insistence on producing
graphical output more of a nuisance than a benefit. All we really need in a context like this is a program

1 For a selection of Processing examples, see http://www.openprocessing.org/.
2 For a section of Java examples, see http://www.java.com/en/java_in_action/.

6-2

that allows the user to enter a floating point number representing the amount of the bill and then computes
and prints an appropriate tip. No graphics are required.

The interaction with this program might be something like this:

 Please enter the cost of the meal: $20.00
 Appropriate tip: $3.00 (based on a 15% tip rate)

Here, the program output is shown in black and the user input is shown in green. One could imagine a
nicer interface using buttons and numeric fields, but the sort of two-dimensional graphics in which
Processing specializes wouldn’t be all that useful here.

This section introduces the mechanisms provided by the Java programming environment that can be used
to implement this behavior. Additional tools for graphical user interfaces are addressed in a later chapter.

6.2. Java	
 Basics	

Processing is based on Java and runs on the Java virtual machine, so the syntax of Processing statements
is the same as the syntax of Java statements. However, the Processing development environment
automatically performs a number of important programming tasks that Java programmers must perform
manually. This makes Processing programs easier to write but also tends to favor a narrower range of
graphically-oriented goals. By contrast, Java programs are harder to write but can be designed to achieve
a broader range of goals. By the end of this chapter, we will see that Processing programs fit nicely into
the broader context of Java programs, but we must start by covering some basic elements of Java
programs.

6.2.1. Writing,	
 Compiling	
 and	
 Running	
 a	
 Simple	
 Java	
 Program	

In Java, every application is implemented as a class with a main() method. The following Java program
is a maximally simple, do-nothing program that runs but accepts no input and produces no output.3

public class DoNothing {

 public static void main(String[] args) {
 }

}

The syntax of the main() method is relatively familiar given our experience with writing methods in
Processing, but there some new programming constructs in this program:

• A Java program is implemented as a class using the pattern:
 public class ClassName { }.

3 While the Processing language is supported by only one Integrated Development Environment (IDE), see the
discussion in Chapter 1, the Java language is supported by a wide variety of IDEs, including BlueJ, Eclipse, JBuilder
and NetBeans. This text will not pre-suppose any particular IDE; the lecture and lab materials present particular
IDEs.

6-3

We will discuss classes, their definition and their use in Chapter 9. For now, simply note that all
Java programs must be declared in a new class, as shown here, and stored in a file whose name is
the same as the class name, with the .java extension.

• A Java program is implemented as a class with a single main() method. This “main” method
must be called main, be declared as public static, return void, and declare an array of
Strings as a parameter.4 When we run this class as an application, the Java environment
automatically calls this method. This approach is similar to the way in which Processing
automatically calls the setup() and draw() methods when we run a Processing program.

• This Java program specifies that the class and the method should be public. We can use
public/private/protected access level modifiers in Processing as well, but only in the
context of class data and methods. In this example, the public modifier is required for the
main() method and we make it a practice of always using public access for classes as well.

• The main() method is declared to be static, which specifies that Java should associate the
main() method with the DoNothing class rather than with individual objects of type
DoNothing. We discuss this concept in more detail later in the text. For now, make it a practice
of declaring the main() method as static. As we see below, we’ll also declare constants to be
static.

The Processing development environment automatically adds this supporting code to your Processing
application in order to run it as a Java application. You can take this for granted with working with
Processing, but when you move to other more traditional programming applications, you must turn to
Java and build this code yourself.

We now discuss these issues in further detail and take the opportunity to extend this do-nothing
application into a do-something application.

6.3. Building	
 Java	
 Console	
 Applications	

Processing programs are exclusively graphical in nature. Even the following Processing program, which
prints a message on the text output panel, brings up an empty graphical output panel.

println("simple text output");

This reflects Processing’s pointed focus on graphical applications.

Java programs, on the other hand, may or may not be graphical. The simplest Java programs are textual
and conduct their user interaction by prompting users with text messages on a text-only command screen
and reading user input from that same screen. The command screen is commonly called a console and
text-oriented applications are commonly called console applications.

4 The args parameter receives the arguments passed to the program from the command-line. More details on this
feature of Java can be found here: http://java.sun.com/docs/books/tutorial/essential/environment/cmdLineArgs.html.

6-4

For example, the following Java program implements the same behavior as the Processing-based simple
text output program shown above.

Java Program:
public class SimpleOutput {

 public static void main(String[] args) {
 System.out.println("simple text output");
 }

}

Sample Output:
simple text output

This Java version of the program requires a bit more code to implement the same textual output and
doesn’t produce a graphical output screen. More work for less functionality – this doesn’t feel like a step
in the right direction.

However, the Java environment provides one feature that we’ve been wishing for throughout most the
previous chapters, the ability to get textual input from the user. Consider the following program, which
reads the user’s name and prints out a personalized message.

Java Program:
import java.util.Scanner;

public class SimpleInput {

 public static void main(String[] args) {
 System.out.print("Please enter your name: ");
 Scanner keyboard = new Scanner(System.in);
 String name = keyboard.nextLine();
 System.out.println("Let it be known that " + name + " was here.");
 }

}

Sample Interaction:
Please enter your name: Kilroy
Let it be known that Kilroy was here.

This sample interaction shows the user input in green; the computer output in black. When the user
runs the program, Java prints the initial prompt (“Please enter your name: ”) and then waits for
the user to enter a string of characters. The user must then enter their name and press the “Enter” key. The
program then reads the remainder of the line and then formats and prints an output message.

Note that while this example program seems rather simple, it is doing one thing that Processing doesn’t
easily support – it reads a string typed in by the user. Processing supports text output to its text output
panel, but to implement text input in a Processing program, the program would need to use

6-5

keyPressed() to listen for key strokes from the user and convert the sequence of characters
representing a name into a string, one character at a time. While this is possible, it is not that easy, and the
task would be more difficult for numeric input in which the program would need to convert sequences of
numerals into numbers. For example, it would have to convert the five-character sequence: '4' '8'
'.' '2' '4', into the decimal number 48.24. As we will see in the next section, Java’s Scanner
class provides a pre-defined algorithm for this parsing problem.

This section now talks about the key features of this program.

6.3.1. Importing	
 and	
 Using	
 Java	
 Packages	

In Processing, we tended to simply use pre-defined features such as print() without much fanfare;
they were simply there for us to use.5 In Java, we must explicitly load pre-defined features using the
import command. In the example, the following command is used to load the Scanner class library.

 import java.util.Scanner;

This command is placed at the beginning of the class file and must specify the fully qualified name of the
Scanner Class, which includes the java.util package designation. Without this import command, Java
would not have access to the definitions for the input parsing methods, e.g., nextDouble().

The Scanner class defines a number of useful input methods, including:

• nextDouble() reads double values;
• nextInt() reads integer values;
• next() reads the next word;

Note that the Scanner class reads through the user’s input one character at a time, scanning for
appropriately structured sets of numerals, decimal points, letters and spaces that make up numbers and
words. This process is called parsing, A sequence of numerals like “123” is interpreted as an integer;
“abracadabra” as a word; “3.14159” as a floating point number. The scanner knows when a number or
word starts and stops by looking for whitespace characters, that is spaces (“ ”), tabs and new lines. When
reading a double, integer or word, the scanner reads the item in question and then consumes (i.e., skips
over) the white space character that follows it.

Reading a string that includes spaces, like “to be or not to be,” requires the use of another method:

• nextLine() reads the remainder of the line as a String.

This method preserves the spaces and tabs in the string, consuming only the new-line at the very end.

 A full discussion of the Scanner class and its methods can be found elsewhere.6

5 Processing does support imported libraries, which we used to load and play audio files using the Minim library, but
most of the basic graphical features are pre-loaded.
6 A full discussion of the Scanner can be found here:
http://java.sun.com/docs/books/tutorial/essential/io/scanning.html.

6-6

6.3.2. Working	
 with	
 Java	
 Objects	

The Java programming language is more overtly object-oriented than Processing. The first clear example
of this fact is that even the do-nothing program shown above is implemented as a class. The same is true
with the SimpleOutput and SimpleInput. When we ask Java to run these classes, it looks for a
main() method with the appropriate signature, i.e., public static void main(String[]),
and invokes that method.

A second example of this object-oriented focus is the commands used for text output and input. Consider
the following print command:

 System.out.print("Please enter your name: ");

This command is the same as it is in Processing except that we’ve added the System.out reference as a
qualifier. All calls to methods in Java must be fully qualified with the object or class that defines them. In
this case, the print() method is defined by the out object, which is a public data item defined in the
System class that always references the standard output stream to the console. The same use applies to
the println() statement at the end of the program. We use the dot notation discussed in Chapter 3 to
specify that these methods are defined for the System.out object.

The same rule is applied to the commands in the example that read user input from the console.

 Scanner keyboard = new Scanner(System.in);
 String name = keyboard.nextLine();

The program uses the Scanner class to read user input. It declares a keyboard object of type
Scanner, passing it the system-defined input stream, and calls this new Scanner object’s
nextLine() method to read the remainder of the current line typed by the user. This call is done, again,
using dot notation. Finally, the Scanner constructor receives as an argument System.in, an object that
references the standard keyboard input stream from the System class using dot notation.

 The general pattern for using the dot notation to reference objects and methods is as follows:

objectIdentifier.instanceMemberIdentifier
OR
ClassIdentifier.staticMemberIdentifier

• objectIdentifier is a reference to a particular object that defines the instance
member;

• instanceMemberIdentifier is the name of the instance data or method
member being referenced;

• ClassIdentifier is the name of the class that defines the static member;
• staticMemberIdentifier is the name of the static data or method member

being referenced.

Member Reference Pattern	

6-7

Printing strings, as shown here, is the same in both Processing and Java. Processing, however, doesn’t
provide support for formatting numbers. Java does. For example, the following program reads a number
and computes the interest earned based on a 6% interest rate:

Java Program:
import java.util.Scanner;

public class ComputeInterest {

 public static double RATE = 0.06;

 public static void main(String[] args) {
 System.out.print("Please enter your account balance: ");
 Scanner keyboard = new Scanner(System.in);
 double balance = keyboard.nextDouble();
 System.out.printf("\tYour interest: %.2f", balance * RATE);
 }
}	

Sample Interaction:
Please enter your account balance: $1000.00
 Your interest: $60.00

This program declares and initializes RATE, a constant to represent the interest rate. As noted in the
introduction, constants like this are declared to be public and static as done with the main()
method. We cover this issue in detail in Chapter 9.

This program uses the printf() method, which is also defined by System.out. This is a print
statement, similar to print() and println(), that supports user-specified formatting. The first
argument to printf() is a String to be printed, called the format-string. In addition to normal
characters, the format-string can contain a set of formatting specifications known as placeholders where
each placeholder must be matched by an additional argument following the format-string. The
printf() method replaces each placeholder with the value of corresponding argument formatted a
specified by the placeholder. The following illustration demonstrates how the printf() method works
in the given example:

Here, the placeholder %.2f is replaced in the output string by the value of the expression balance *
RATE, formatted as a decimal number with at most two decimal digits.7

7 The Java API reference documentation provides more detail on the use of the Scanner class, see
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Scanner.html.

6-8

6.3.3. Adding	
 methods	
 to	
 Java	
 Applications	

Notice also that the RATE constant definition is placed in the ComputeInterest class definition,
that is, inside the class definition block. This makes the constant local to the ComputeInterest class,
accessible to all the methods that may be defined for ComputeInterest, which, at this point, is only
the main() method.

If we chose to implement a method to compute the interest, this method would also be defined in the
ComputeInterest class as shown here.

Java Program:
import java.util.Scanner;

public class ComputeInterest {

 public static final double RATE = 0.06;

 public static double computeInterest(double balance) {
 return balance * RATE;
 }

 public static void main(String[] args) {
 System.out.print("Please enter your account balance: $");
 Scanner keyboard = new Scanner(System.in);
 double balance = keyboard.nextDouble();
 System.out.printf("\tInterest: $%.2f (using a %2.1f%% rate)",
 computeInterest(balance), RATE * 100);
 }

}	

Sample Interaction:
Please enter your account balance: $100
 Interest: $6.00 (using a 6.0% interest rate)

In this code, the RATE constant as well as the computeInterest() and main() methods are
declared in the ComputeInterest class definition block as public and static. RATE is accessible
to both methods and is, indeed, used by both for their own purposes, computeInterest() for
computation and main() for display.

 	

6-9

6.4. Revisiting	
 the	
 Example	

Returning to the vision of a tip calculation program, we would like to implement the following algorithm:

Given:
• A specified tip rate (e.g., 10% or 15%)

Algorithm:
1. Print a prompt for the total restaurant bill on the screen.
2. Read a double value from the screen.
3. Print the suggested tip on the screen.

This is an interactive console program that can be implemented using the mechanisms discussed in this
chapter as shown here.

Java Program:
import	
 java.util.Scanner;	

	

/**	

	
 *	
 TipCalculator	
 computes	
 a	
 tip	
 based	
 on	
 a	
 total	
 restaurant	
 bill	
 and	
 a	
 fixed	
 tip	

	
 *	
 rate.	

	
 *	
 	

	
 *	
 @author	
 kvlinden	

	
 *	
 @version	
 Fall,	
 2009	

	
 */	

public	
 class	
 TipCalculator	
 {	

	

	
 private	
 static	
 final	
 double	
 TIP_RATE	
 =	
 0.15;	
 //	
 The	
 hard-­‐coded	
 tip	
 rate	

	

	
 /**	

	
 	
 *	
 This	
 method	
 drives	
 the	
 console-­‐based	
 interface	
 for	
 the	
 application.	

	
 	
 *	
 	

	
 	
 *	
 @param	
 args	

	
 	
 *	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ignored	

	
 	
 */	

	
 public	
 static	
 void	
 main(String[]	
 args)	
 {	

	
 	
 System.out.print("Please	
 enter	
 the	
 total	
 bill:	
 $");	

	
 	
 Scanner	
 keyboard	
 =	
 new	
 Scanner(System.in);	

	
 	
 double	
 bill	
 =	
 keyboard.nextDouble();	

	
 	
 System.out.printf("\tSuggested	
 tip:	
 $%.2f",	
 bill	
 *	
 TIP_RATE);	

	
 }	

	

}

Sample Output:
Please enter the total bill: $48.24
 Suggested tip: $7.24

Note that the format and content of the documentation in this program is very similar to the
documentation used in Processing applications. In Java, the main application documentation is generally
placed just above the class definition, after the package and import commands.

