
5-1

Chapter 5. Selection

In Chapter 1 we saw that algorithms deploy sequence, selection and repetition statements in combination

to specify computations. Since that time, however, the computations that we’ve implemented have been

strictly sequential in nature, starting with the first statement and proceeding sequentially through to the

last statement. Many interesting and useful computations require selective execution, in which one path of

execution is selected from many potential paths.

This chapter introduces the use of selection statements in Processing. Repetition statements are deferred

until Chapter 7.

5.1. Examples: Going beyond Sequence

To this point in the text, the programs we have designed and implemented have been sequential in nature.

We found this flow of control useful in achieving a number of interesting goals, but to be honest, we were

significantly constrained in what we could attempt.

Consider, for example, the falling ball that we implemented in

Chapter 4, which modeled a moving ball that appears to fall to

the bottom of the screen with gravitational acceleration. While

interesting, our solution was less than satisfying given that the

ball flies off the output pane and never “bounces” back up

when it hits the floor. We’d like the ball to bounce, as shown

here. Modeling a ball that bounces like this requires that the

program reverse the ball’s direction of motion at the precise

point when the ball reaches the bottom of the pane. The

program must be selective about when it does this, so simple

sequential execution is not sufficient.

Similarly, consider the interactive programs that we

implemented in Chapter 4. It was nice to place objects on the

output pane using mouse clicks, but there are times when we’d

like to be able to initiate actions only when the mouse press is

in a certain location. Implementing button pressing interfaces,

as shown here, require this selective behavior. The action is

initiated only if the mouse press is “on” the button; other

actions are initiated if the press is on another button.

In this chapter we will introduce the selection statements provided by Processing to perform these two

sorts of selective tasks.

5-2

5.1.1. Sequence

This sequential flow of control can be visualized as shown in the

diagram on the right. Programs execute their statements one at a

time, from top to bottom. This is implemented in Processing using

statement blocks as shown here:

 {

 statement1;

 statement2;

 …

 statementn;

 }

In Chapter 4, we introduced methods, which re-route the flow of

control temporarily, first from the calling program to the method and

then back again, but the fundamental flow of control is still

sequential. Methods help us implement abstraction, but do not help

us implement selective behavior.

5.1.2. Selection

Selective execution allows programs to select their

behavior based on an appropriate condition and can

be visualized as shown in the diagram to the right.

Execution flows from the top to the logical

condition. If the expression evaluates to true, then

the selected statement is executed, otherwise

control flows past the statement without executing

it. This simple selection mechanism is powerful

enough to implement the bouncing balls and

interactive buttons described above.

Processing implements selective behavior using the

if statement.

Diagrams of this sort (and the sequential diagram shown above) are called flow charts because they

graphically depict the flow of control through a program. Statements are represented as boxes. Selection

conditions are represented as diamonds, which indicates that the specified condition must be checked. If

the condition is true, control follows the arrow labeled “true” and executes the operation shown in the box

on the left. Otherwise, control follows the arrow labeled “false”.

5-3

5.2. Using the if Statement

Consider the task of determining an appropriate output message based on the value of a variable

containing a user’s guess in a simple guessing game. The correct answer is 3, so if the user guesses 3,

then we would like to print a suitably congratulatory message. In previous chapters, we might have

written a simple statement like the following:

 println(‘‘You win!’’);

Unfortunately, this statement would be executed in all cases, that is, un-selectively. Instead, we’d like to

implement the behavior specified in the following algorithm.

Given:

 guess is set to an integer representing the user’s guess.

Algorithm:

1. If guess equals 3:

a. Print a congratulatory message;

To implement this algorithm in Processing, we use the following statement:

if (guess == 3) {

 println("You win!");

}

This program segment assumes that the variable guess has been assigned some integer value. It contains

a single if statement that specifies a Boolean condition (guess == 3). Recall that we discussed

Boolean expressions in some detail in Chapter 3. If this condition evaluates to true, then Processing

executes the statement block immediately following the condition. In this example, if the value of guess

is 3, then the string “You win!” is printed on the console; otherwise the statement block is skipped

entirely and control proceeds to the following statements. Note that because the selectively-executed

statement is implemented as a block, we could include multiple statements to be selected.

5-4

The if statement has the following general pattern:

5.2.1. Adding an else clause

The congratulatory program we’ve just wrote uses the first form of this if statement pattern. Now,

consider the problem of extending our program to handle cases where the user guesses the wrong answer.

For example, if the user doesn’t guess 3, then we’d like to print a suitably discouraging message. We

could specify this selective behavior by extending the previous algorithm as follows:

1. If guess equals 3:

a. Print a congratulatory message;

Otherwise:

a. Print a discouraging message.

We can implement this algorithm in Processing using the following code segment:

if (guess == 3) {

 println("You win!");
} else {

 println("Go fish.");

}

In this revised code segment, if the condition

evaluates to true, we get the behavior we saw

before, but this time, if the condition evaluates

to false, Processing executes the statement

immediately following the else. The flow of

control through this code can be visualized as

shown in the flow chart to the right.

if (condition) {

 statements

}

or

if (condition) {

 statements1

} else {

 statements2

}

 condition is a Boolean expression indicating which branch of the statements to

follow;

 statementsi are the sets of statements executed based on the conditions.

if Statement Pattern

5-5

5.2.2. Revisiting the Bouncing Ball

To model a moving ball that bounces when it hits the bottom of the output pane, we can use an if

statement with a Boolean expression designed to detect when the ball has “hit” the bottom of the output

pane and a second if statement with a Boolean expression designed to detect when the ball has “hit” the

side of the output pane. The bouncing algorithm would be as follows:

Given:

 The output frame is setup properly (see the falling ball example in Chapter 4).

Algorithm:

1. Erase the ball from its previous location.

2. Draw the ball at its current location.

3. Move the ball to right and down.

4. If the ball hits the floor:

a. Reverse its vertical movement.

5. If the ball hits either side:

a. Reverse its horizontal movement.

We’ve already implemented the first three steps of this algorithm in the falling ball example from Chapter

4, but we’re now adding the selection statements in steps 4 and 5. These statements specify a bouncing

behavior by reversing the velocity of the ball. When the ball hits the floor, the vertical component of the

velocity is reversed; when the ball hits either wall, the horizontal component is reversed.

Note that neither of these selection statements require an otherwise clause; if the ball doesn’t hit the floor

or either of the walls, then the code continues to animate the unobstructed motion of the ball. Note also

that these selection statements are independent of one another; the ball could either hit the floor or the

wall, neither or both. The following code implements this extended “bouncing” ball algorithm.

5-6

Bouncing off the floor and the right wall:

Bouncing off the floor and the left wall:

Bouncing twice off the floor:

final WIDTH = 250, HEIGHT = WIDTH/3;

final int BALL_SIZE = 25,

 BALL_RADIUS = BALL_SIZE / 2;

float ballX, ballY; // ball location

float deltaX, deltaY; // ball velocity

float gravity = 0.10; // acceleration

void setup() {

 size(WIDTH, HEIGHT);

 smooth();

 // Start the ball in the upper left.

 ballX = 15;

 ballY = 15;

 // Set the rate of change for x and y.

 deltaX = 5;

 deltaY = 0;

}

void draw() {

 // Erase the ball at the previous location.

 noStroke();

 fill(255, 30);

 rect(0, 0, width, height);

 // Draw the ball at the current location.

 stroke(0);

 fill(79, 129, 189);

 ellipse(ballX, ballY, BALL_SIZE, BALL_SIZE);

 // Move the ball to the right and down.

 ballX += deltaX;

 ballY += deltaY;

 deltaY += gravity;

 // Bounce the ball when it hits the floor.

 if ((ballY + BALL_RADIUS) >= height) {

 deltaY *= -0.85;

 }

 // Bounce the ball off the walls.

 if (((ballX + BALL_RADIUS) >= width) ||

 ((ballX - BALL_RADIUS) <= 0)) {

 deltaX *= -0.85;

 }

}

This code is largely copied from the example shown in Chapter 4 except for the following key changes:

first, the beginning statements in the draw() method implement the trail that makes it easier to see the

ball’s motion in the output (in Chapter 4, we simply erased the previous location completely); second, and

most importantly, the two if statements at the end of the draw() method model the bouncing behavior.

5-7

The first if statement checks to see if the ball is at the bottom of the output pane; this is true when the

ball’s y component, which marks the center of the ball, plus the ball’s radius is beyond the height of the

output pane. The code includes the radius because the ball should bounce based on its outer surface rather

than its center. This models the ball bouncing up from the floor. The if statement has no else clause,

which indicates that when the ball is not at the bottom of the output pane, it should continue to move as

normal. To reverse the direction of the ball, the program multiplies deltaY by -0.85, which inverts the

direction of change of ballY. The code uses -0.85 rather than -1.0 to model the effect of friction; if it

had used -1.0, the ball would never stop bouncing.

The second if statement checks to see if the ball is either on the far right or the far left of the output

pane. This models the ball bouncing off the walls. It does this using a more complex conditional

expression than the previous examples use, checking whether the ball is beyond the right boundary or

beyond the left boundary of the output pane.

5.3. Using Nested if Statements

Programs can place selection statements inside of one another. This is called nesting. Nested if

statements can implement multi-branch selective behavior where the number of branches is greater than

2. Consider the task of assigning a grade letter grade given a percentage score. We can specify this

behavior using the following algorithm:

Given:

 score is set to a valid percentage grade.

Algorithm:

1. If the score is greater than 89:

 Set the letterGrade to A.

Otherwise, if the score is greater than 79:

 Set the letterGrade to B.

Otherwise, if the score is greater than 69:

 Set the letterGrade to C.

Otherwise, if the score is greater than 59:

 Set the letterGrade to D.

Otherwise

 Set the letterGrade to F.

5-8

We can implement this algorithm with the following code segment:

if (score > 89) {

 letterGrade = 'A';

} else if (score > 79){

 letterGrade = 'B';

} else if (score > 69){

 letterGrade = 'C';

} else if (score > 59){

 letterGrade = 'D';

} else {

 letterGrade = 'F';

}

Notice that the order we specify the conditions matters: If the first condition is true (i.e., if the score is

greater than 89), then letterGrade is set to A and the flow of control skips past all the other selection

conditions. If the first condition is false, then the second condition is checked and if it is true (i.e., if

score is greater than 79), then letterGrade is set to B and the flow of control skips the remaining

conditions. Thus, letterGrade is set to B only if condition 1 is false and condition 2 is true.

Conditions 3 and 4 are nested even lower. Finally, if the score hasn’t met any of the previous conditions,

then letterGrade is set to F. This “last resort” option has no selection condition and is thus executed

when all of the previous conditions are false.

This control flow can be visualized as shown in the following flow chart:

5-9

The nested if statement has the following general pattern:

5.3.1. Revisiting the Interactive Buttons

As an example of the interactive button interface discussed above, consider

the task of offering the user three color choices, as shown on the right. The

idea is that when the user clicks the mouse on one of the choice “buttons” on

the left of the sketch, then Processing will automatically set the chosen color

area on the right to that chosen color. For example, if the user clicks color 1,

then the output area on the right should be set to color 1. If the user clicks on

the output color area, then the output area should revert to a default color.

Because this task can have potentially many different color choices, far

more than one or two, the nested-if statement is a natural choice for

implementing the desired behavior.

We can specify this behavior using the following algorithm for the mousePressed() method.

Given:

 color1, color2, color3 and defaultColor are set to valid color values.

 An output frame with three color-choice areas set up as shown in the output frame below.

 The user has clicked the mouse.

Algorithm (for mousePressed()):

1. If the user presses the mouse in the upper-left color choice area:

 Set the output color to color1.

Otherwise, if the user presses the mouse in the center color choice area:

 Set the output color to color2.

Otherwise, if the user presses the mouse in the lower-left color choice area:

 Set the output color to color3.

Otherwise:

 Set the output color to a defaultColor.

if (condition1) {

 statements1

} else if (condition2) {

 statements2

}

 …

} else {

 statementsn

}

 Conditioni is a Boolean expression indicating whether or not to execute

statementsi;

Nested if Statement Pattern

5-10

This algorithm focuses only on the mousePressed() method, leaving the relatively simple setup()

and draw() methods to the programmer’s discretion. The flow of control through this algorithm thus

assumes that the user has pressed the mouse somewhere on the output frame. The following program

implements this algorithm.

The default output:

When the user chooses blue:

final int UNIT = 100;

final color COLOR1 = color(0, 102, 153),

 COLOR2 = color(50, 152, 0),

 COLOR3 = color(152, 3, 0),

 COLOR_DEFAULT = color(200);

void setup() {

 size(UNIT*2, UNIT*3);

 background(COLOR_DEFAULT);

 // Set up the three color choice boxes.

 fill(COLOR1);

 rect(0, 0, UNIT, UNIT);

 fill(COLOR2);

 rect(0, UNIT, UNIT, UNIT);

 fill(COLOR3);

 rect(0, UNIT*2, UNIT, UNIT);

 fill(COLOR_DEFAULT);

}

void draw() {

 // Re-draw the output color box.

 rect(UNIT, 0, UNIT*3, UNIT*3);

}

void mousePressed() {

 // The user has clicked the upper-left choice box.

 if ((mouseX > 0) && (mouseX < UNIT) &&

 (mouseY > 0) && (mouseY < UNIT)) {

 fill(COLOR1);

 // The user has clicked the center choice box.

 } else if ((mouseX > 0) && (mouseX < UNIT) &&

 (mouseY > UNIT) && (mouseY < UNIT*2)) {

 fill(COLOR2);

 // The user has clicked the lower-left choice box.

 } else if ((mouseX > 0) && (mouseX < UNIT) &&

 (mouseY > UNIT*2) && (mouseY < UNIT*3)) {

 fill(COLOR3);

 // The user has clicked in the output color box.

 } else {

 fill(COLOR_DEFAULT);

 }

}

This program responds to user mouse press events by determining which of the three color choice boxes

they clicked on and then changes the color on the right to the chosen color. It includes simple

implementations of setup(), which ensures that output frame is configured as required by the

5-11

algorithm shown above, and draw(), which does the actual coloring of the output frame, but we focus

on the implementation of mousePressed() here.

The code for the mousePressed() method can be visualized as shown in the following flow chart

showing the nested if structure.

Note that the selection conditions in this flow of control are nested. If the first condition is true (i.e., if the

user clicks in the upper-left box), then color1 is used and the flow of control skips past all the other

selection conditions. If the first condition is false, then the second condition is checked and if it is true

(i.e., if the user has clicked in the center box), then color2 is used and the flow of control skips the

remaining conditions. If the third condition is checked and if it is true (i.e., if the user clicks on the

bottom-left box), then color3 is used. Finally, if the user has pressed the mouse (which we are

assuming for this algorithm) but they haven’t pressed it in any of the three choice boxes, then

defaultColor is used.

5.4. Using the switch Statement

One disadvantage of the multi-branch if-else statement discussed above concerns the efficiency of the

manner in which it evaluates its conditions. If the user chooses the upper-left color choice box, the multi-

branch if-else statement evaluates only one condition, changes the color and moves on. However, if

the user chooses the center box, the multi-branch if-else statement evaluates two conditions before

moving on, and with the bottom box or the default case, three conditions. In general, selecting branch i

using a multi-branch if-else statement requires the evaluation of i conditions. Because the evaluation

of each condition consumes time, branches that occur later in the multi-branch if-else statement take

longer to execute than branches that occur earlier in the statement. While this might not matter in simple,

non-time-critical applications, it can matter a great deal with time-critical production systems.

To help address this issue, Processing provides the switch statement, an alternate multi-branch

selection statement that is implemented more efficiently than multi-branch if-else statements.

5-12

Consider the task of implementing a five-branch selection statement that chooses an appropriate output

message for a card guessing game, as specified in the following algorithm.

Given:

 guess is set to an integer representing the user’s guess.

Algorithm:

1. If guess == 2:

 Print “Got any two’s?”.

Otherwise, if guess == 3:

 Print “Got any three’s?”.

Otherwise, if guess == 4:

 Print “Got any four’s?”.

Otherwise, if guess == 5:

 Print “Got any five’s?”.

Otherwise:

 Print “Invalid guess!”.

We could implement this algorithm using a multi-branch if statement, but instead we implement it using

the switch statement as follows.

switch (guess) {

case 2:

 println("Got any twos?");

 break;

case 3:

 println("Got any threes?");

 break;

case 4:

 println("Got any fours?");

 break;

case 5:

 println("Got any fives?");

 break;

default:

 text("Invalid guess: " + guess);

}

This program executes a single switch statement that specifies the value of the variable guess as its

switch expression. It then specifies four cases (for values 2, 3, 4 and 5) and one default case (specified by

the default keyword). When executed, this switch statement checks the value of guess and jumps

immediately to the case indicated by guess’s value. If there is no case specified for guess’s value, the

default case is executed. It is probably easiest to understand its behavior by comparing it to an

equivalent multi-branch if statement as follows.

5-13

Multi-branch if-else switch

 type variable = expression;

 if (variable == constant1) {

 statementList1

 } else if (variable == constant2) {

 statementList2

 ...

 else if (variable == constantn) {

 statementListn

 } else {

 statementListn+1

 }

 switch (expression) {

 case constant1:

 statementList1

 break;

 case constant2:

 statementList2

 break;

 ...

 case constantn:

 statementListn

 break;

 default:

 statementListn+1

 }

Note that the branches of the if statement roughly correspond to the cases of the switch statement and

that the final else clause in the if corresponds to the default case.

The switch statement provides a couple of advantages over the multi-branch if: first, its syntax is

somewhat cleaner, which makes it easier to understand; second, its execution is more efficient because it

only evaluates the switch expression once and then jumps immediately to the correct case. The flow of

control through this statement can be visualized as shown in the following flow chart, which assumes that

the statement lists in the case clauses end with a break statement as programmed above.

5-14

As can be seen here, there is only ever one condition that is checked with the switch statement, which

means that the efficiency of execution for all the branches is uniform.

There are, however, a few rules to keep in mind when considering the switch statement:

1. The switch statement requires that its expression return an integer-compatible value. Any

expression that returns a value from a finite domain, e.g., integers, booleans, and characters, can

be used in a switch expression. String, real and reference data types are not integer

compatible.1 In the example given above, the switch expression is a single integer variable,

guess.

2. The branch tests must be equality tests based on the value of the expression and literal values

specified in the case clauses. In the example given above, the cases are chosen when guess is

equal to 2, 3, 4, or 5 respectively.

3. switch statements implement drop-through behavior, which means that when the code segment

for the chosen case is executes, control will naturally flow through all the remaining cases in the

switch block. This is generally not desirable, so the code segments for each case usually end

with a statement that forces the control flow to leave the switch statement. These statements

include the following:

 The break statement, which is used in this example, causes control to go on to the

statement following the switch statement;

 The return statement causes control to leave the current method – clearly, this statement is

only useful in methods;

 The throw statement raises an exception – the control flow for exceptions will be discussed

in Chapter 9.

One useful consequence of this drop-through behavior is that a switch statement can specify

more than one case clause for a particular statement list. As an example, we could add the

following code to the very beginning of the switch statement shown above:

switch (guess) {

case 0: case 1:

 println("Too small");

 break;

// the other cases follow here unchanged…

}

This code prints “Too small” when guess is equal to either 0 or 1. From Processing’s point of

view, case 0 has no statements, and thus no break statement, so the flow of control moves on to

the statement list for case 1.

1 Java 1.7 supports switching on string values.

5-15

switch statements use the following general pattern:

switch(expression) {

…

case constanti:

 statementListi

…

default:

 statementList

}

 expression is an expression that evaluates to an integer-compatible value;

 Each constanti is an integer-compatible constant or literal;

 Each statementListi is a sequence of valid statements that can be empty;

 The default case is optional and is executed if none of the other cases holds.

switch Statement Pattern

