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Chapter 4.   Methods 

We saw in Chapter 1 that programs can simulate real-world objects as they move or change over time by 

rapidly drawing a sequence of carefully designed static images. This is known as animation. 

Implementing animation requires that a program display objects, which can be done using the geometric 

drawing methods discussed in Chapter 2; remember key information about the objects over time, which is 

done using the typed variables discussed in Chapter 3; and group blocks of code for setting up and 

drawing the state of the objects in each static frame, which is done using methods.  

We have used several of Processing's pre-defined methods in earlier chapters, but in this chapter we will 

see how to define our own methods and how they facilitate code reuse and procedural abstraction.  We 

will also look at a special method in Processing that makes it easy to write programs that implement 

animation. 

4.1. Example: Animation 

Computer animation simulates how real objects move and change 

and is commonly used in video games and in digital movie effects. 

Some current movies have been completely produced using digital 

animation. We will begin with a simple example of animating a 

blue ball so that it moves around on a two-dimensional white 

background.  As illustrated in Figure 4-1, we’d like the ball to start 

in the upper left corner and move to the lower right corner.  This 

simple illustration will be our initial vision in this chapter and we 

will build a program that simulates the movement of this ball. 

Later in the chapter we will also experiment with some other 

animation effects. 

One of the earliest forms of animation to be developed is a flip book that 

contains pictures that vary gradually from one page to the next, so that when 

the pages are turned rapidly, the pictures appear to move or change.
1 As 

technology improved, photos taken by cameras replaced the hand-drawn 

images to create sequences of still frames that could be shown as movies. 

Regardless of the technology, however, animation is always based on the 

same principle –displaying carefully designed sets of still images in rapid 

succession.  

 

 

                                                      
1
 According to Wikipedia (http://en.wikipedia.org/wiki/Flip_book), the first flip book appeared in 1868 when it was 

patented by John Barnes Linnett who called it a kineograph ("moving picture"). 

Figure 4-1. A moving ball 

http://en.wikipedia.org/wiki/John_Barnes_Linnett
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For our ball-moving example, to animate the ball one could create a sequence of still images such as the 

frames shown in Figure 4-2.  When shown in rapid succession, the human vision system perceives the six 

individual balls shown in these six frames as a single ball moving through space. To achieve this, a 

program must be able to do the following: 
 

• Set up the static frame on which the animation takes place — in this case, a white background. 

• Draw a sequence of individual frames each of which shows a ball in a location slightly changed 

from the previous frame. 

In this chapter we will use methods provided by Processing to perform these two tasks and will also 

discuss how to make our own programmer-defined methods. 

4.2. Animation Methods 

The first task in implementing our vision of an animated ball is to separate the instructions required to set 

up the static frame on which the animation takes place, which are to be executed only once, from the 

instructions that draw the individual frames of the animation, which are executed repeatedly, once for 

each frame. To achieve this separation, a program must create two “blocks” of code, one for set up and 

the other for drawing. Processing provides built-in methods for this purpose, which it calls automatically. 

4.2.1. Defining Methods 

Consider the task of setting up a light grey background as the static frame for our animation. In previous 

chapters, we would have written a sequence of statements like the following: 

 size(200, 100); 

 background(220); 

In this section we will see how to block these statements together so that they are executed together, just 

once, at the beginning of the program execution. In Processing, this is done by writing a definition for the 

built-in setup() method. The following code illustrates how this is done. 

 

void setup() { 

  size(200, 100); 

  background(220); 

} 

 

 

Figure 4-2. Six animation frames for a moving ball 
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returnType methodName(parameterDeclarations) { 

  statements 

} 

 returnType is the type of value returned by the method or void if the 

method does not return a value; 

 methodName is the identifier that names the method; 

 parameterDeclarations is a comma-separated list of parameter 

declarations of the form type identifier that is omitted if there are 

no parameters;  

 statements is a set of statements that define the behavior of the method, 

implemented as a block of statements delineated by braces.  

 

 There are several things to be noted about this definition of the setup() method: 

 The most familiar part is the sequence of two statements, a call to the size() method followed 

by a call to background(). This definition of the setup() method bundles these statements 

into a block using a matched pair of curly braces ( { } ).  This indicates that Processing should 

execute the statements together, separately from other blocks of statements. 

 The pair of parentheses that follow the name tells Processing that setup is the name of a method 

rather than a variable or constant. In this text, as a reminder of this distinction, we are attaching 

the parentheses when using the name of a method — e.g., setup(). 

 The word void indicates that this method returns nothing when it is called. Rather, such void 

methods perform some action — in this case, setting up a 200  100 output frame that has a gray 

background — but don’t return a value that can be used in some expression.   

We have already used void methods in several of our programs.  For example, in Chapter 2, we 

used the void method smooth() to render graphics in a particular way. But we have also used 

methods that do return values. For example, the random()method returns a random value of 

type float that can be used in an expression. 

 The empty parameter list, (), indicates that this method does not expect any arguments when it is 

called.  The smooth() method is another such method that has no arguments.  The random() 

method, on the other hand, expects a numeric argument when it is called — e.g., 

random(255). Methods that expect multiple arguments must use a comma-separated list of 

arguments — e.g., size(100, 100). 

 Processing already knows about the setup() method and will automatically call it once at the 

beginning of program execution.  For example, if we run the program shown above, it produces 

the gray output frame as shown.  Note, however, that we may not include our own explicit calls to 

setup() in our programs. 

Our definition of the setup() method in this example is one example of the following general pattern 

for method definitions: 

  

 

 

 

 

 

 

 

Method Definition 
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The second task in implementing our vision of an animated ball is to draw the individual frames of the 

animation in rapid sequence. For this, we can use Processing's built-in draw() method.  The following 

program shows an example of how it is used in a program and the output produced.  When this program is 

executed, Processing first calls setup(), which sets the size and color of the static background frame. 

Processing does this only once. It then begins to call draw()repeatedly.  This results in an ellipse in the 

upper-left of the static background being drawn over and over again unless we stop it — for example, by 

clicking on Processing's stop button () or selecting Stop on the Sketch menu. 

 

void setup() { 

  size(200, 100); 

  background(220); 

} 

 

void draw() { 

  stroke(0); 

  fill(255); 

  ellipse(25, 25, 25, 25); 

} 

 

While this example does not produce a very interesting animation — the ball never moves — it does 

illustrate a valuable feature of methods. The setup() and draw() methods separate the program into 

distinct blocks that each have their own task.  The setup block prepares the static background frame; the 

draw block draws each individual frame. This separation, the bundling and naming of distinct tasks, prove 

useful as we write programs of increasing complexity because it allows us to write separate methods for 

the various tasks to be performed and then combine them into a complete program. 

Note that when we introduce methods to our programs, we must always write our statements inside the 

defining block of statements for one of program’s methods, either setup(), draw()or some other 

method. We can still declare constants and variables outside of the methods, but all other statements must 

be in some method. For example, in program just given, we must put the stroke(0) call in either 

setup() or draw(); it cannot be on a line by itself outside those methods. When Processing sees a 

setup() method, it calls that method to start the program and generates a syntax error if it finds any 

statements outside of methods. 

The reason that this example program doesn’t produce a very interesting animation is because it 

repeatedly draws an ellipse of the same size and same color in the same place. To produce the illusion of 

movement, the draw() method must vary what it draws in each successive frame. This requires that 

draw() “remember” what is has drawn before and make small changes in each successive frame.  

The following program remembers the location of the ball and modifies this location on each successive 

output frame. The output shown includes snapshots of every tenth animation frame, starting with the first. 
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When Processing executes the program, the animation takes somewhat less than 100 frames for a ball to 

appear to move completely across the output frame.
2
  

Frame 1. 

Frame 11. 

 

Frame 21. 

 

Frame 31. 

 

 

int ballX, ballY;   // the location of the ball 

 

void setup() { 

  size(200, 100); 

   

  // Start the ball in the upper left. 

  ballX = 25; 

  ballY = 25; 

} 

 

void draw() { 

  // Erase the ball at the previous location. 

  background(220); 

   

  // Draw the ball at the current location. 

  stroke(0); 

  fill(255); 

  ellipse(ballX, ballY, 25, 25); 

   

  // Move the ball to the right. 

  ballX += 2;  

 } 

 

There are two key features of this program that make the animation work: 

 The program introduces two new variables, ballX and ballY, to represent the current location 

of the ball at each step of the animation. It declares these variables at the beginning of the 

program, outside of both setup() and draw(), so that both methods can use them:  

setup() initializes their values to 25; draw() uses them to specify the position of the ellipse 

representing the ball and then adds 2 to its x coordinate so that next time through, the ellipse will 

be 2 pixels to the right. Had we declared these variables inside of either of the methods, the 

variables would not have been available to the other method. This illustrates the concept of scope, 

which dictates the context in which an identifier names its constant or variable. This concept will 

be discussed in more detail below. For now, follow the practice of declaring variables and 

constants that must be shared by both setup() and draw() at the top of the program. 

                                                      
2
 The only way to appreciate the effect of these animations is to run them yourself.  Source code for all of the 

programs presented in this text is available on the book's website (http://cs.calvin.edu/processing). 
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 The draw() method redraws the gray background each time it is called, which erases any balls 

that it may have drawn before. This is implemented by moving the call to background() from 

setup(), where it would only be called once, to draw(), where it will be called for each 

frame. 

Taken together, these two features of the program create an animation that the human visual system will 

perceive as a single ball moving across a gray background. 

By default, Processing calls the draw()method at the rate of 60 frames per second. A program can 

control this rate using the frameRate() method, which requires an integer argument that specifies the 

desired frame rate. Processing will achieve the specified rate provided that the computer is fast enough to 

support it. 

4.2.2. Revisiting the Example 

Our first animation program, shown in the previous section, uses the setup() and draw() methods to 

animate a ball flying across the output pane. In this section we extend this program by modifying both the 

x and y coordinates of the ball so that it moves to the right and downward in a way that imitates the effect 

of gravity. An algorithm that specifies this behavior is shown here. This algorithm specifies the behavior 

of both the setup() and the draw() methods. 

Given:  

 The constant BALL_SIZE represents the size of the ball. 

 The constant GRAVITY represents the desired vertical acceleration. 

 width and height represent the width and height of the display window. 

Algorithm (for setup()): 

1. Create a display window that is width x height screen pixels. 

2. Set the initial position of the ball to the upper left part of the display window by setting 

ballX = 15 and ballY = 15. 

3. Set deltaX = 5 and deltaY = 0. 

Algorithm (for draw()): 

1. Erase the display window. 

2. Draw the ball at its current location. 

3. Change the ball’s location by setting ballX = ballX + deltaX and ballY = ballY + 

deltaY. 

4. Change the ball’s location by setting deltaY = deltaY + GRAVITY. 

 

This design specifies algorithm very similar to the one used to move the ball from left to right by a 

constant amount for each animation frame. They key difference is that it adds steps to modify the ball’s y 

coordinate (ballY) as well. setup() step 3 initializes a y acceleration factor (deltaY) and draw() 

step 3 modifies the y coordinate (ballY). These changes have the effect of moving the ball from top to 

bottom. In addition,  draw() step 4 increases the y acceleration by a contant (GRAVITY). This causes 

the ball to drop more quickly as the animation goes on, which models the effect of gravity. 
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Note that this algorithm includes separate sequences for each of the key methods (setup() and 

draw()). We do this because each method is to some degree separate from the others and thus has its 

own operations and control flow. 

The following code implements this algorithm and includes a sequence of four frames of output that it 

produces. To see the gravitational effect, observe that the ball moves to the right at a constant rate from 

one frame to the next, but the rate at which it is falling increases from frame to frame.  Once again, you 

need to actually execute the program yourself to appreciate the animation. 

 

final int BALL_SIZE = 25; 

final float GRAVITY = 0.20; // fall acceleration 

 

int width = 200, height = width/2; 

float ballX, ballY;         // ball location 

float deltaX, deltaY;       // ball velocity 

 

void setup() { 

  size(width, height); 

  smooth(); 

   

  // Start the ball in the upper left. 

  ballX = 15; 

  ballY = 15; 

   

  // Set the rate of change for x and y. 

  deltaX = 5; 

  deltaY = 0; 

} 

 

void draw() { 

  // Erase the ball at the previous location. 

  background(255); 

 

  // Draw the ball at the current location. 

  fill(80, 130, 190); 

  ellipse(ballX, ballY, BALL_SIZE, BALL_SIZE); 

   

  // Move the ball to the right and down. 

  ballX += deltaX; 

  ballY += deltaY; 

  deltaY += GRAVITY; 

} 

Frame 1. 

 
Frame 10. 

 
Frame 19. 

 
Frame 28. 

 

Note that when Processing runs this program, it keeps running, regardless of whether the ellipse it is 

drawing can be seen or not. In this example, only the first 30 frames include a visible ellipse; the rest are 

blank because the ellipse’s position is outside the output frame. As noted earlier, Processing programs 

that contain the draw() method continue to run until the user presses the stop button () or selects Stop 

on the Sketch menu.  Execution also stops when an exit(); or stop(); statement is encountered.  

The  noLoop() method can also be used to keep draw() from executing repeatedly.  The exit() and 

stop() methods are explained in the next section and the noLoop() method in  the next chapter. 
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4.3. Interaction Methods 

In the previous section we looked at how the setup() and draw() methods are used to support 

drawing and animation. Processing also provides built-in methods for detecting events such as the user 

moving the mouse, clicking the mouse, or pressing a key on the keyboard. A program can provide 

definitions for these methods to specify how to respond to these user interactions. This approach to 

programming is called event-driven programming. 

4.3.1. Responding to Mouse and Keyboard Events 

One common form of user interaction is based on mouse events. Whenever the user clicks the mouse on 

the output pane, Processing automatically calls the mouseClicked() method. In addition, it keeps 

track of where the mouse pointer is by storing the x coordinate of its location in the variable mouseX and 

the y coordinate of its location in the variable mouseY.  

The following program illustrates how a program can use these features to create an interactive program.  

This program responds to a mouse click by drawing an ellipse at the location of the mouse pointer when 

the click occurred. The output shown was produced by the user clicking the mouse when its pointer was 

in the upper middle of the output panel.  Processing calls mouseClicked() when the user clicks the 

mouse when the pointer is positioned in the output frame and it stores the location of the pointer in the 

pre-defined variables mouseX and mouseY. These values are then used as the x and y coordinates of the 

center when the ellipse is drawn.  Note that the empty draw() method must still be included in order for 

the program to run interactively, even though its body is empty. 

 void setup() { 

  size(200, 200); 

  background(220); 

} 

 

void draw() { 

} 

 

void mouseClicked() { 

  ellipse(mouseX, mouseY, 25, 25); 

} 

Processing provides the following built-in mouse event methods and calls them automatically when the 

specified event occurs: 

 mouseClicked() — pressing and releasing the mouse button 

 mousePressed() — pressing the mouse button without releasing it 

 mouseDragged() — moving the mouse around while it is pressed 

 mouseReleased() — releasing the mouse after it has been pressed 

 mouseMoved() — moving the mouse when it is not pressed 

Processing also provides the following variables whose values are set by these methods: 
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 mouseX, mouseY — the x and y coordinates of the current position of the mouse pointer 

 pmouseX, pmouseY — the x and y coordinates of the previous position of the mouse pointer 

(i.e., in the previous output frame) 

 mousePressed — a boolean variable that is set to true if the mouse was pressed and false if 

not 

Processing also provides built-in methods for keyboard events. For example, suppose we replace the 

definition of mouseClick() in the previous example with a definition of the keyPressed() method 

as shown in following example.  When executed, this modified program opens an output frame and waits 

for the user to press a key on the keyboard. When this occurs, Processing calls the keyPressed() 

method, which draws an ellipse in the center of the output.. 

 void setup() { 

  size(200, 200); 

  background(220); 

} 

 

void draw() { 

} 

 

void keyPressed() { 

  ellipse(100, 100, 25, 25); 

} 

 

Processing provides the following built-in keyboard event methods and calls them automatically when the 

specified event occurs: 

 keyPressed() — pressing some key on the keyboard 

 keyReleased() — releasing a key after it has been pressed 

It also provides the following variables whose values are set by these methods: 

 key — the character of the key just pressed or released (a char value) 

 keyPressed — a boolean variable that is set to true if a key was pressed and false if not 

4.3.2. Integrating Animation and Interaction Events 

We have looked at animation and interaction events and now we consider how we might integrate these. 

Our programs will use draw() to drive the animation and interaction methods to handle user events. The 

program shown in this section illustrates how to do this.   

The following program starts by drawing an ellipse in the center of the output panel and then allows the 

user to drag the ellipse around by pressing and dragging the mouse. The position of the ellipse is based 

upon where it was previously located and the current location of the mouse pointer.  Each time the user 

drags the mouse, the ellipse appears to move 1/10
th
 of the way from its  current location to where the 
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mouse pointer is located.
3
  When the mouse button is released, the stop() method stops the program.

4
  

Note that this program draws the background only once — in setup()— so that we can see where the 

ellipses have been drawn over the course of the animation.  

 final float FOLLOW_FACTOR = 0.1; 

 

int ballX, ballY; 

 

void setup() { 

  size(200, 200); 

  background(220); 

  ballX = 100; 

  ballY = 100; 

} 

 

void draw() { 

  ellipse(ballX, ballY, 25, 25); 

} 

 

void mouseDragged() { 

  ballX += (mouseX - ballX) * FOLLOW_FACTOR; 

  ballY += (mouseY - ballY) * FOLLOW_FACTOR; 

} 

 

void mouseReleased() { 

  stop(); 

} 

4.3.3. Revisiting the Example 

Using interaction methods, we can modify the example program shown in Section 4.2.2, which animated 

a falling ball, to remove the movement and, instead, allow the user to drag the ball around using the 

mouse. An algorithm that produces this modified behavior is shown here. 

Given:  

 The constant BALL_SIZE represents the size of the ball. 

 The constant FOLLOW_FACTOR represents the desired rate at which the ball should follow 

the mouse. 

 WIDTH and HEIGHT represent the width and height of the display window. 

 mouseX and mouseY represent the current coordinates of the mouse. 

Algorithm (for setup()): 

1. Create a display window that is WIDTH x HEIGHT screen pixels. 

2. Set the initial position of the ball to the middle of the display window. 

Algorithm (for draw()): 

                                                      
3
 Of course, the ellipse doesn't actually move — a new ellipse is drawn in the next frame.  But it is easier and more 

intuitive to think of it as moving. 

 
4
 Another useful method is save() which can be used to save a copy of the output canvas.  For example, adding 

the statement save("MovingEllipse.jpg"); in the mouseReleased() method would save an image of 

the output frame in a JPEG file named "MovingEllipse.jpg" in the current program folder. 
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1. Erase the display window. 

2. Draw the ball at its current location. 

Algorithm (for mouseDragged()): 

1. Move the ball’s location toward the position of the mouse by setting ballX = ballX + 

((mouseX – ballX) * FOLLOW_FACTOR).  

2. Do a similar modification for the ball’s y coordinate. 

 

This algorithm is similar to the one shown in Section 4.2.2, but it replaces the movement and acceleration 

features with the mouse-following features shown in the mouseDragged() algorithm steps 1 and 2. 

The addition of the following rate factor (FOLLOW_FACTOR) keeps the mouse a little bit behind the 

cursor. 

The following program implements this algorithm.  Note that the draw() algorithm step 1 is 

implemented in a way that produces a kind of disintegrating vapor trail of the previous positions of the 

ellipse. This effect is achieved by drawing a semi-transparent white rectangle over the entire output frame 

with each mouse drag. This rectangle covers the previously drawn balls but allows them to show through. 

These successive frames, with each mouse drag "whitewashing" the previous layers, have the effect of 

gradually erasing the balls over time.  

final int SIZE = 25; 

final float FOLLOW_FACTOR = 0.1; 

final int WIDTH = 250, HEIGHT = WIDTH; 

 

float ballX, ballY; 

 

void setup() { 

  size(WIDTH, HEIGHT); 

  background(255); 

  smooth(); 

   

  // Start the ball in the middle. 

  ballX = WIDTH / 2; 

  ballY = HEIGHT / 2; 

   

  // Set the animation to 25 frames/second. 

  frameRate(25); 

} 

 

 

void draw() { 

  // Slowly whitewash the previous frames. 

  noStroke(); 

  fill(255, 25); 

  rect(0, 0, WIDTH, HEIGHT); 

   

  // Draw the ball at the current location. 

  stroke(0); 

  fill(80, 130, 190); 

  ellipse(ballX, ballY, SIZE, SIZE); 

} 

 

void mouseDragged() { 

  // Move the ball part-way toward the  

  // mouse location 
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  ballX += (mouseX - ballX) * FOLLOW_FACTOR; 

  ballY += (mouseY - ballY) * FOLLOW_FACTOR; 

} 

 

void mouseReleased() { 

  stop(); 

} 

4.4. New Method Definitions 

In the previous sections, we defined the setup(), draw() and other methods to support animation and 

interactivity. The approach was to provide definitions for any of a set of methods that Processing has 

already declared and will undertake to call at the appropriate times during the execution of a program. 

Methods are, in fact, a considerably more general mechanism that allows programmers to declare and 

define their own methods, call them when needed and potentially to reuse them as needed. This reuse 

brings many benefits, including the elimination of redundant code and the creation of more 

understandable code. 

This section reconsiders the chapter example, extending it somewhat and then details the definition and 

use of methods.  

4.4.1. Reconsidering the Example 

Our most recent version of the ball-animation example implements a ball that follows the mouse pointer 

around the output window. This brings to mind the video game Pac-Man that hit the video arcades in the 

1990s and became one of the most famous arcade games of all time.
5
 The traditional Pac-Man is a small 

yellow circle with a hungry, chomping mouth and this raises the intriguing possibility of redesigning our 

ball as a more complex object that resembles a Pac-Man. 

The program we develop in this section draws a Pac-Man with a closed mouth as a yellow circle: 

 

and a Pac-Man with an open mouth as a yellow circle with black-filled section of an ellipse drawn on top: 

                                                      
5
 See http://en.wikipedia.org/wiki/Pac-Man. 

 

http://en.wikipedia.org/wiki/Pac-Man
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For the ellipse section in this last picture, we can use Processing's arc() method  which is called with a 

statement of the form
6
  

 arc(x, y, width, height, start, stop); 

where  

x, and y, are the coordinates of the center of the arc’s ellipse (cf. the ellipse() method); 

width and height are the width and height of the arc’s ellipse (cf. the ellipse() method); 

start is the angle at which to start the arc, measured in radians; and 

stop is the angle at which to stop the arc, measured in radians.   

For a closed mouth, we can use 0 for both start and stop.  For an open mouth, we can use -PI/8 for 

start and PI/8 for stop, where PI is a predefined constant provided in Processing whose value is an 

approximation to π (3.14159 …).
7
  The integer variable biteFactor is used to switch back and forth 

between a closed and an open mouth:  a value of 0 represents a closed mouth and a value of 1 represents 

an open. Switching between the values 0 and 1 value of biteFactor is switched between 0 and 1 by 

adding one and reducing the result modulo 2: 

 biteFactor = (biteFactor + 1) % 2; 

Given this technique, we could specify the code for an animated, chomping Pac-Man as follows: 

                                                      
6
 See http://www.processing.org/reference/arc_.html. 

7
 Processing also provides constants TWO_PI, HALF_PI, and QUARTER_PI, representing 2π, π/2, and π/4, 

respectively.  It also provides degrees() and radians() to convert between radians and degrees.  See 

Processing's web reference (http://www.processing.org/reference) for more information. 

http://www.processing.org/reference/arc_.html
http://www.processing.org/reference
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Even-numbered 

frames 

 
 

Odd-numbered 

frames. 

 

int biteFactor; 

 

void setup() { 

  size(100, 100); 

  frameRate(5); 

  biteFactor = 0; 

} 

 

void draw() { 

  background(0); 

 

  // Draw the Pac-Man head. 

  noStroke(); 

  fill(255, 255, 0); 

  ellipse(33, 50, 25, 25); 

 

  // Draw the mouth. 

  fill(0); 

  arc( 33, 50, 25, 25,  

       biteFactor*(-PI/8.0), biteFactor*(PI/8.0) ); 

 

  // Switch the bite factor (values: 0 or 1). 

  biteFactor = (biteFactor + 1) % 2; 

} 

Note that this new block of code designed to draw the Pac-Man head and mouth is simply coded directly 

into the draw() method definition. To draw two Pac-Man figures side by side, we could simply copy 

and paste this block of code two times in the draw() method. This approach would work, but, 

unfortunately, does not scale well.  Just imagine how long the draw() method would be if we wanted to 

draw a dozen or two dozen Pac-Man figures all in the same sketch; we would have to copy and paste the 

Pac-Man-drawing instructions over and over, one for each Pac-Man.  

This would be so much easier if we had a Pac-Man-drawing method that we could call, but unfortunately 

Processing does not provide one. Processing’s pre-defined drawing methods are restricted to more 

commonly used figures — e.g., points, lines, ellipses, etc. — rather than at more complex or arbitrary 

figures — e.g., Pac-Man figures. This is a good, general approach for Processing to take. Thousands of 

programmers work productively at this level of abstraction and one wonders how many programmers 

would ever want a Pac-Man-drawing method anyway, but all programmers inevitably find themselves in 

situations where they would like to create their own unique, higher-level methods.  

4.4.2. User-Defined Methods 

In the previous section, we discussed the need for new, higher-level methods that aren’t already 

implemented in Processing. Processing supports this by allowing programmers to define their own 

methods. As an example, consider the task of computing the sum of an arithmetic sequence S.   The most 

famous instance of this computation is the problem of adding the numbers from 1 to 100. One could do 

this by toiling through the long arithmetic summation:          , but the problem is much easier 

if one notices the pattern           (     )  (    )    (     )         

      

The general form of this problem can be specified using the number of elements (n), the starting point (a) 

and the common difference (d).   In the previous example, n=100, a=1 and d=1, but one could consider 
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returnType methodName(parameterDeclarations) { 

  statements 

} 

 returnType is the type of value returned by the method or void if the 

method does not return a value; 

 methodName is the identifier that names the method; 

 parameterDeclarations is a comma-separated list of parameter 

declarations of the form type identifier that is omitted if there are 

no parameters;  

 statements is a set of statements that define the behavior of the method.  

 

other sequences as well, including: 7, 10, 13, 16, 19, 22, in which n=6, a=7 and d=3.  To compute the sum 

of the general form of an arithmetic sequence, we can use Gauss’s Formula: 

   
  (   )

 
 

Given the general usefulness of such a formula, a programmer might be well-served defining a method to 

perform the computation, given values for a, n and d. The method can be specified using the following 

algorithm: 

Algorithm (for sequenceSum()): 

1. Receive n, start, and difference, representing the number of elements (an integer), 

starting number for the sequence (a floating point value), and common difference between 

sequence elements (another floating point value), from the calling program. 

2. Return n*start + n*difference*(n-1)/2. 

 

We can implement this algorithm as a method using the following code: 

float computeSequenceSum(int n, float start, float difference) { 

 return n*start + (n*difference*(n-1))/2.0; 
} 

 

This code follows the pattern for new method definitions: 

 

Note: 

 Its return type is float, which indicates that the method computes and returns a floating point 

value; 

 The name of the method, computeSequenceSum, gives an indication of what the method does 

in order to make its use more understandable. This is the name used to call, or invoke, the 

method. In this text, we attach the parentheses, (), when using the name of a method — i.e., 

computeSequenceSum(). 

Method Definition 
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 The parameter declarations specify that method must receive an integer and two floating point 

values from its calling program: the number of elements (n), the starting point (start) and the 

increment (difference); 

 A method bundles statements together into a block using a matched pair of curly braces ( { } ).  

As with the setup() and draw() methods discussed above, this indicates that Processing 

should execute the statements together, separately from other blocks of statements; 

 The return statement computes the value of the given expression and returns it to the calling 

program. 

Now that we’ve defined the computeSequenceSum() method, we can use it throughout our program 

as needed, without having to re-implement its computation over and over again. In addition, we can 

provide the method to other programmers who can use it without completely understanding how it was 

implemented. This is an example of procedural abstraction. Programmers who know what the 

procedure (aka., method) named computeSequenceSum() does can use it without knowing how it 

does it. This is a powerful concept. Throughout this text, we’ve been using methods whose complex 

operations were carefully designed and implemented by other programmers for use by all programmers. 

For example, the random() method generates pseudo-random numbers using a complex algorithm that 

we, as the users of this method, do not need to completely understand. This allows programmers to 

address continuously new problems without having to repeatedly “reinvent the wheel” for each new 

program.  

The following sections discuss the key aspects of this method definition and of how it is used. 

4.4.3. Parameters 

The parameter list in our method definition, specified within the parentheses, (), is shown here: 

float computeSequenceSum(int n, float start, float difference) { 
 return n*start + (n*difference*(n-1))/2.0; 

} 

Parameters are variables that store the values passed to the method.  These values can then be used in the 

method body.  In our example, the parameter list indicates that the computeSequenceSum() method 

expects one integer and two floating point values from its calling program. The integer specifies the 

number of elements and the two floating point values specify the starting point and the sequence 

increment respectively. Note that the parameter list specifies the type of each of these parameters. It is 

therefore a declaration of new variables. When the method is called, Processing will allocate variables for 

each of the three parameters and initialize their values to whatever the calling program provides. 

This parameter mechanism generalizes the method definition. This method can now be used to compute 

the sum of any sequence based on its starting point, number of terms and its sequence increment. This 

allows programmers to use this method to compute the famous summation of the numbers 1 through 100, 

by specifying the three values 100, 1, 1, or any other sequence, by specifying the appropriate number of 

elements, starting point and sequence increment. 
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For some method definitions, the parameter list may be empty, in which case the parentheses are still 

included, (), but there are no parameters specified within them. Before this section, our method 

definitions have had empty parameter lists, e.g., setup() and draw(). 

When writing algorithms for methods that receive values, we use a special term to denote the parameter-

passing operation. As an example, step 1 in the computeSequenceSum() algorithm above, indicates 

that the method receives a list of values from the calling program. This text follows this convention when 

specifying algorithms for methods with parameters. 

4.4.4. Return Values 

The return type and return statement in our method definition are shown here: 

float computeSequenceSum(int n, float start, float difference) { 

 return n*start + (n*difference*(n-1))/2.0; 

} 

The initial word float indicates that this method returns an floating point value when it is called. The 

corresponding return statement computes and returns the value of the given expression where the type 

of the expression must match this specified return type. In this case, the value of the expression, 

n*start + (n*difference*(n-1))/2, is a floating point value as required. At most one return 

statement is allowed in a method. The pattern for the return statement is as follows. 

 

 

 

 

When writing algorithms for methods that return values, we use a special term to denote the value-return 

operation. As an example, step 2 in the computeSequenceSum() algorithm above indicates that the 

method returns a value to the calling program. This text follows this convention when specifying 

algorithms for methods with return values. 

Methods whose return type is specified as void perform actions but do not return a value. For example, 

in Chapter 2, we used the void method smooth() to render graphics in a particular way; we didn’t 

expect it to compute and return a value. The animation and interaction methods discussed in this chapter, 

e.g., setup() and draw(), are void methods as well; they setup and drive animations, but they don’t 

compute or return values. void methods do not have return statements. 

As an example, consider the problem of printing simple status messages to the output console. A program 

might need to do this at various points in its execution and it would like the output to be formatted in a 

consistent manner. We can implement a method that does this using the following code: 

void printStatusMessage(String message) { 

  println("Status message: " + message); 

} 

return expression; 

 expression is a valid expression whose type is the same as (or is 

compatible with) the specified return type of the containing method. 

 

Return Statement 
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methodName(argumentList) 

 methodName is the identifier that names the method being called; 

 argumentList is a comma-separated list of arguments, where arguments 

are expressions that return a value of the type expected by the 

corresponding parameters in the method parameter list. The argument list  

is omitted if the method expects no arguments. 

This method is a void method, that is, its return type is void. Its purpose is to print the message that it 

receives from its calling program in a consistent manner. It does not compute or return any value.  

4.4.5. Method Invocation 

We conceived of and implemented the computeSequenceSum() method ourselves, which means that 

Processing cannot know about it in the way that it knows about its own pre-defined methods, e.g.,  

setup() and draw().  As a consequence, we cannot expect Processing to automatically call our new, 

user-defined methods as it does its own methods. This means that it is our responsibility to modify our 

program to call the new computeSequenceSum() method in the appropriate way and in the 

appropriate place(s). The following code computes the value of the famous sum of 1+2+…+100 using our 

new computeSequenceSum() method and prints the solution (5050.0) in the console output panel: 

void setup() { 

  println(computeSequenceSum(100, 1, 1)); 

} 

float computeSequenceSum(int n, float start, float difference) { 

  return n*start + n*difference*(n-1)/2.0; 

} 

This code segment includes the full definition of the computeSequenceSum() method, but it also 

includes a call to computeSequenceSum() in the setup() method. When this program is executed, 

Processing automatically calls the setup() method as discussed above, but we must call 

computeSequenceSum() explicitly. Note also that even though this program doesn’t implement 

animation, the setup() is still required because that’s the method Processing calls it to start the 

program running. 

We are then, of course, free to call the method as many times as we would like. For example, the 

following invocation computes the sum of a sequence of length 6, starting at 7 with an increment of 3: 

computeSequenceSum(6, 7, 3) 

This code follows the pattern for invoking new methods: 

 

The arguments in the method call must match the parameters in the method definition in number, order 

and type. Thus, given the call computeSequenceSum(100, 1, 1),  the arguments, 100, 1, 1, are 

passed to the parameters n, start and difference respectively. In this case, the parameter list 

specifies one integer value followed by two floating point values, so the three arguments must either be an 

integer followed by two floating point values, or values that can be cast to integer, float and float. 

Method Invocation 
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For methods that specify no parameters, the argument list must be empty. The smooth() method, for 

example, specifies no parameters and thus allows no arguments when it is called.  The random() 

method, on the other hand, expects a numeric argument when it is called — e.g., random(255). 

Methods that expect multiple arguments must use a comma-separated list of arguments — e.g., 

size(100, 100). 

The flow of data and control through our example program can be pictured as shown here: 

 

(1) As part of the execution of the program, the declaration statement for sum is encountered. 

(2) The variables n, a, and d, which are specified as arguments to the sequenceSum()method, 

are evaluated and the resulting values are copied into the method definition’s parameters n, 

start, and difference, respectively, and control transfers from setup()to 

sequenceSum(). Note that the names of the argument variables and the parameters are 

independent of one another. They can, but need not be, the same.  

(3) The sequenceSum()method’s return expression is evaluated using the values of n, 

start, and diff. 

(4) The return statement makes the value of this expression the return value of the 

sequenceSum()method and control transfers back to setup(). 

(5) The return value is assigned to the variable sum. If the program calls the method but doesn’t 

include this assignment statement capturing the result, then the value computed by the method is 

discarded. 

(6) Control proceeds to the next statement in setup(). 

4.4.6. Testing 

Given that our new method may be used many times, potentially by different programmers, it is important 

that it be both correct and as efficient as possible. Clearly a programmer must be very careful when 

designing and implementing a method, but even in the best of circumstances, programmers can make 
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mistakes. Just as programs must be tested, see the discussion of this in Chapter 2, methods should also be 

tested.  

Testing is a significant undertaking in and of itself and, as such, is generally integrated throughout the 

development lifecycle. During the initial analysis phase, test cases should be identified. In the case of 

computing the sum of a sequence, we should identify test cases that we can use to exercise the method we 

design and implement. These test cases should include a variety of examples, including tricky boundary 

cases that might be easily overlooked, such as the following: 

Input (n, a, d) Expected output Description 

100, 1, 1 5050.0 We can start with this famous example, for which the correct 

solution is well-known. 

6, 7, 3 87.0 This is another simple example mentioned during the 

analysis and design phases. 

0, 0, 0 0.0 This is a tricky boundary case that could lead to a division-

by-zero error. 

4, 0, -1 -6.0 There’s no reason the increment can’t be negative. 

2, 2.5, 2.5 7.5 Neither is there any reason the start and increment values 

must be integers. 

For a real, production method, we’d likely want to specify more test cases and work out the appropriate 

solutions by hand, but this will suffice for our purposes here. We can run these test cases with this simple 

program, which is often called a driver program: 

void setup() { 

  println(computeSequenceSum(100, 1, 1)); 

  println(computeSequenceSum(6, 7, 3)); 

  println(computeSequenceSum(0, 0, 0)); 

  println(computeSequenceSum(4, 0, -1)); 

  println(computeSequenceSum(2, 2.5, 2.5)); 

} 
 

float computeSequenceSum(int n, float start, float difference) { 

  return n*start + n*difference*(n-1)/2.0; 

} 

When we run this program, we see that the output matches our expectations. This increases our 

confidence in the correctness of the implementation. However, it’s difficult to be completely sure of the 

correctness of our implementations – not with this simple example and certainly not with more complex 

examples. 

With Processing code, testing can often be done by watching the methods’ graphical output, but this 

approach doesn’t help with non-graphical code. Thus, programmers must often write testing programs 

such as the one shown here that allow them to test the behavior of their code.  
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4.4.7. Scope 

As our programs grow in size and complexity, we will find ourselves using more and more identifiers. 

Processing programs, for example, often manipulate a variety of geometric objects, all of which have x 

and y coordinates that are most appropriately named with the identifiers x and y.  

As an illustration, consider the Pac-Man reformulation of the chapter example introduced in Section 4.4.1. 

That program animated a single Pac-Man with a chomping mouth.  The following code extends that 

program by animating two Pac-Man figures as they march off the output pane. As you read through the 

code and execute it for yourself, be careful to distinguish what the identifiers x and y refer to at each 

place they appear in the program. 

Frame 1. 

 
 

Frame 6.  

 
 

Frame 11. 

 

float x, y; 

int biteFactor; 

 

void setup() { 

  size(100, 100); 

  frameRate(5); 

  x = width/3; 

  y = height/2; 

  biteFactor = 0; 

} 

 

void draw() { 

  background(0); 

 

  drawPacman(x, y); 

  drawPacman(x + 33, y); 

 

  // Move the Pac-Man figures to the right. 

  x += 5; 

 

  // Switch the bite factor (values 0 or 1). 

  biteFactor = (biteFactor + 1) % 2; 

} 

 

void drawPacman(float x, float y) { 

  // Draw the body. 

  noStroke(); 

  fill(255, 255, 0); 

  ellipse(x, y, 25, 25); 

 

  // Draw the mouth. 

  fill(0); 

  arc(x, y, 25, 25,  

      biteFactor*(-PI/8.0), biteFactor*(PI/8.0) ); 

} 

This code uses the variables x and y to store the position of the left-most Pac-Man from frame to frame 

and also draws a second Pac-Man exactly 33 pixels to the right of the first one by setting its x coordinate 

to x+33. This keeps the two Pac-Man figures moving in tandem. Note that the identifiers x and y are 

used in different places to refer to different things: 
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 In the setup() and draw() methods, x identifies the variable holding the x coordinate of the 

left-most Pac-Man figure; this use of this identifier x is declared in the first line of the program 

and is coded in blue. y identifies the variable holding the y coordinate of both Pac-men; it is also 

declared in the first line of the program and coded in blue. 

 In the drawPacman() method, x refers to the x coordinate of the Pac-Man figure currently 

being drawn by the method, which may be either the left-most or the right-most Pac-Man figure; 

this use of the identifier x is declared in the parameter list of the drawPacman() method. The 

y parameter is treated in a similar manner. 

For this program to work correctly, Processing must distinguish between these two uses of the identifiers 

x and y. It does this using scope.  An identifier’s scope is the part of the program where that identifier 

is associated with a given declaration. When Processing sees an identifier, it searches for a declaration of 

that identifier in the current block; if it finds on there, it uses it, otherwise it proceeds to the surrounding 

block, and so forth.  In this example, the use of the identifiers x and y in the calls to ellipse() and 

arc() are associated with the parameters x and y declared by the drawPacman() method. These 

uses are found inside the red bounding box drawn around the drawPacman() method. In contrast, the 

use of x and y in draw() are associated with the declarations of x and y in the first line of the 

program. These uses are found inside the blue bounding box that surrounds the entire program. 

Variables declared within a method, either as a parameter or in the method’s definition block, are called 

local variables. The scope of their identifiers is limited to the small bounding boxes around the method 

that declares them. In the example, the x and y parameters declared in the drawPacman() method are 

local to that method; their scope is limited to the red bounding box around the drawPacman() method. 

Variables declared at the top of a program are called global variables. The scope of their identifiers 

ranges throughout the whole program. In the example, the x and y parameters declared at the top of the 

program are global to the entire program. If an identifier has more than one declaration, the most local 

declaration takes precedence.  

It is best to declare variables as locally as possible. Methods should declare parameters to receive 

working values from the calling program so that the method’s code can control the type and use of those 

values. As a general rule, Processing programs should use global variables only when there are values that 

must be shared between several of Processing’s pre-defined methods. For example, the global values of x 

and y in this sample Pac-Man program must be shared by both setup() and draw() for the animation 

to work properly, so they are declared globally. Everything else is declared locally. 

4.4.8. Method Documentation 

Methods must be documented. They are significant elements of the programs they support and may be 

used by many different programmers, so the creator(s) of a method should provide complete 

documentation on the purpose and behavior of the method, including a precise specification of what each 

parameter, if any, is used for. For example, the following is an appropriate level and form of 

documentation for computeSequenceSum() method: 

/** 

 * computeSequenceSum() computes the sum of the sequence specified  
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 * by the arguments using Gauss’s formula. 

 * 
 * @param n - the number of numbers in the sequence 

 * @param start - the first value in the sequence 

 * @param difference - the increment between each number 
 */ 

float computeSequenceSum(int n, float start, float difference) { 

 return n*start + (n*difference*(n-1))/2.0; 

} 

Yes, the documentation is actually longer that the method itself. This is entirely appropriate. It explains 

what the program does and the purpose of each parameter. This information is critical for programmers 

hoping to use the method correctly and productively. While the identifier chosen for each parameter gives 

a pretty good idea of the purpose of that parameter, a brief explanation is sometimes needed to make 

things sufficiently clear. This documentation is also likely as long or longer that the documentation for the 

program itself. This also is entirely appropriate. The method may eventually make its way into a library of 

useful methods that is used by many other programs and thus, the method itself may be used more 

frequently than the program for which it was originally designed and implemented. 

Note that though this method documentation mentions the use of Gauss’s formula, it focusses primarily 

on the method’s behavior and use. This helps establish the procedural abstraction provided by the method, 

which is more important for programmers using the method than are the details of how the method works. 

4.5. A Pac-Man Example 

This section extends the Pac-Man example introduced in the previous section. It uses animation to make 

the Pac-Man figures move, interaction methods to make multiple Pac-Man figures follow the location of 

the mouse when the user presses or drags the mouse, and user-defined methods to draw the Pac-Man 

figures, increment the coordinate values, and compute the facing angle for each Pac-Man. The algorithm 

that we will implement is as follows. 

Given:  

 The constant BALL_SIZE represents the size of the ball. 

 The constant FOLLOW_FACTOR represents the desired rate at which the ball should follow 

the mouse. 

 WIDTH and HEIGHT represent the width and height of the display window. 

 mouseX and mouseY represent the current coordinates of the mouse. 

 x1, y1 and x2, y2 represent the current coordinates of the two figures. 

 targetX and targetY  represent the current coordinates of the target. 

 biteFactor  represents whether the Pac-Man mouth is open or closed. 

Algorithm (for setup()): 

1. Create a display window that is WIDTH x HEIGHT screen pixels. 

2. Set the initial position of the two Pac-Man figures ball to the middle of the display window. 

3. Set the initial target of the figure movement to be the center of the display window. 

4. Set biteFactor = 0. 

Algorithm (for draw()): 
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1. Erase the display window. 

2. Draw the two Pac-Man figures at their respective locations (see drawPacman()and 

computeFacingAngle() below). 

3. Toggle the bite-factor between 0 and 1 for the next frame. 

Algorithm (for mouseDragged() and mousePressed()): 

1. Set the target of the figure movement to be the location of mouse. 

Algorithm (for drawPacman()): 

1. Receive x and y coordinates and the facing angle from the calling program. 

2. Draw a yellow circle at the given coordinates of diameter BALL_SIZE. 

3. Draw a black mouth on the circle that is open or closed based on biteFactor. 

 

This algorithm serves as a rather higher level design for the program we are writing. For example, 

draw() step 2 involves some details that aren’t completely specified here. The point of this design to 

give a general structure to the program; we leave some details to the implementation step. As our 

programs get more complicated, using algorithms in this manner will become more and more valuable. 

Until this example, we might have been able to skip the algorithm steps altogether because they have been 

rather simple, but with this example we begin to see the value of carefully designing the algorithm first 

before moving on to the task of implementation. 

The following program implements this algorithm.  

 
 
 

 

 
 

 

 
 

 

/** 
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 * Pacman implements a pacman figure (see  

 * http://en.wikipedia.org/wiki/Pacman) that follows the  
 * mouse when it is pressed. Note that it will follow the  

 * mouse off the screen. 

 * 
 * @author nyhl, jnyhoff, kvlinden, snelesen 

 * @version Fall, 2011 

 */ 
 

final int SIZE = 25; 

final float FOLLOW_FACTOR = 0.10; 
final int WIDTH = 300, HEIGHT = WIDTH; 

float x1, y1, x2, y2, targetX, targetY; 

int biteFactor = 0; 
 

void setup() { 

  size(WIDTH, HEIGHT); 
  frameRate(8); 

  x1 = y1 = 10; 

  x2 = width - 10; 
  y2 = height - 10; 

  targetX = WIDTH / 2; 

  targetY = HEIGHT / 2; 
} 

 

void draw() { 
  background(0); 

  fill(255, 255, 0); 

 

  // Position and draw the first Pac-Man figure. 

  x1 = computeNewCoordinate(x1, targetX);  

  y1 = computeNewCoordinate(y1, targetY);  
  drawPacman(x1, y1, computeFacingAngle(x1, y1, targetX, targetY)); 

  // Position and draw the second Pac-Man figure. 

  x2 = computeNewCoordinate(x2, targetX);  
  y2 = computeNewCoordinate(y2, targetY);  

  drawPacman(x2, y2, computeFacingAngle(x2, y2, targetX, targetY)); 

 
  // Reset the bite factor for the next frame. 

  biteFactor = (biteFactor + 1) % 2; 

} 
 

// Treat both mouse pressing and dragging in the same manner. 

void mousePressed() { 

  changeTarget(); 

} 

void mouseDragged() { 
  changeTarget(); 

} 

void changeTarget() { 
  targetX = mouseX; 

  targetY = mouseY; 

} 
 

 

 
 

 

/** 
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 * This method computes a new x or y coordinate for a figure to  
 * simulate motion.  
 * 

 * @param current - the current coordinate value 
 * @param target - the destination value of the coordinate 

 */ 

float computeNewCoordinate(float current, float target) { 
  return current + (target - current) * FOLLOW_FACTOR; 

} 

 
/** 

 * This method computes the angle that faces a figure toward  
 * the mouse. 
 * 

 * @param sourceX - the current x coordinate 

 * @param sourceY -- the current y coordinate 

 * @param targetX - the target x coordinate 

 * @param targetY -- the target y coordinate 
 */ 

float computeFacingAngle(float sourceX, float sourceY,  

                          float targetX, float targetY) { 
  return atan2(targetY - sourceY, targetX - sourceX); 

} 

 
/** 

 * This method draws the Pac-Man figure and the given  

 * coordinates, facing in the direction of the given angle. 
 * 

 * @param x - the desired x coordinate 

 * @param y -- the desired y coordinate 
 * @param angle - the desired angle of orientation 

 */ 

// Draw the Pac-Man figure. 
void drawPacman(float x, float y, float angle) { 

  noStroke(); 

  fill(255, 255, 0); 
  ellipse(x, y, SIZE, SIZE); 

  fill(0); 

  arc(x, y, SIZE, SIZE,  
      biteFactor*(-PI/8.0) + angle, biteFactor*(PI/8.0) + angle ); 

} 

 

In this implementation, Pac-Man #1 starts in the upper left corner of the output canvas, Pac-Man #2 starts 

in the lower right.  The draw() method calls computeNewCoordinate() four times, once for each 

coordinate value; the new coordinate values are computed based on the current mouse position. 


