
-3.1-

Chapter 3. Types and Expressions

The last chapter introduced programming with some rather simple examples. The main programming

elements that we used were methods provided in Processing and our programs consisted of calls to these

methods to perform certain actions such as opening a display window of a certain size, drawing various

geometric shapes such as points, lines, rectangles, and ellipses in this window along with images and

fonts. In this chapter we focus on data, how it can be stored and processed in a program.

3.1. Example: Two-Dimensional Design and Layout

Photographers compose photographs with

careful attention to fundamental design

principles. Creating such works of art may seem

to be effortless, even arbitrary, but this is far

from the case. Consider the photograph shown

in Figure 3-1. It includes a sailboat and the sun

setting on the horizon. Rarely do photographers

place the item or items of interest directly in the

center of the photo or in arbitrary locations.

Rather, they are positioned in certain pleasing

proportional relations with one another.

The question of what constitutes a “pleasing”

proportional relationship has fascinated

philosophers, mathematicians, artists and others

for centuries. One of the most famous answers

to this question dates back to the 4
th
 century BC

when the Ancient Greeks studied and used what

has come to be known as the golden ratio,

golden mean, golden section, or sectio divina

(“divine section”) because it occurs in so many

places in nature, architecture, and art, as well as in other phenomena. This ratio is defined by the problem

of dividing a line segment so that the ratio of its length to the larger part is equal to the ratio of the larger

part to the smaller part, as illustrated in Figure 3-2 .

This golden ration is commonly denoted by a Greek lower case phi, written . If we substitute  for the

ratio a/b in the first part of the formula in Figure 3-2, we obtain



1
1




Figure 3-1. A sample photograph

Figure 3-2. The golden ratio

-3.2-

which can be rewritten 
2
 –  – 1 = 0. Solving this using the quadratic formula from algebra gives the

following irrational number as the unique positive solution of this equation:

. . . 871.61803398
2

51





This golden ratio crops up in an incredible number of places and, in particular, has been used as a design

tool in art and architecture.

In this chapter we will study the basic data types provided in Processing and the kinds of expressions that

can be used. We will use them to build a simple tool for analyzing proportional design — annotating an

image by drawing lines overlaying the image that indicate pleasing proportional relationships and focus

points based on the golden ratio.

3.2. Types

In nearly all programming languages, each data value must have a specified data type that informs the

computer how that value is to be represented, stored, and manipulated. To allow Processing to ensure that

it is handling all data items properly, it requires that the program specify the type of each data item before

it is used. This is done by using a declaration of that item.

Processing provides two kinds of types: primitive types and reference types. Primitive types are the

types used to specify the basic data elements in Processing and in most programming languages: integers,

real numbers, boolean (or logical) values, and single characters. Table 3.1 lists Processing’s primitive

types, giving their names, brief descriptions, ranges of values they may have, and the number of bits

required to store such values.

Table 3-1 Processing's Primitive Types

Name Description Values
Number of

Bits
byte Very small integers –128 (=(2

7
) through +127 (= 2

7
 – 1)

 8

short Small integers –32768 (= –2
15

) through +32767 (= 2
15

 – 1) 16

int Integers –2147483648 (= –2
31

)through +2147483647 (= 2
31

 – 1) 32

long Large integers –2
63

 through +2
63

 – 1 64

float Real numbers –3.4028235  10
38

 through +3.4028235  10
38

 (approx.) 32

double Large real numbers
–1.7976931348623157  10

308
through

+1.7976931348623157  10
308

(approx.)
64

char Single characters
Letters, numerals and other characters with Unicode

representations as integers from 0 through 65535 (= 2
16

 – 1)
16

boolean Logical values true or false 1

Reference types are built from other types. Most often, these other types are classes, discussed in Chapter

7; instances of classes are called objects. The type of an object must be a reference type. Reference types

include String for text strings, and PImage for images. These are but two of hundreds of reference

-3.3-

types that Processing provides. (Descriptions of many of the most important types can be found in the

Processing web reference library.
 1
)

The set of primitive types is fixed and Processing reserves their names (see Table 3.2) as keywords that

may not be used for other reasons in a program. The collection of reference types, on the other hand, can

be expanded by adding programmer-defined types and Processing does not reserve their names as

keywords. One consequence of this is that reference types must be explained to the compiler, either in the

program file itself or in a predefined library.

3.2.1. Literals

A data value of a given type, coded directly into a program, is called a literal. Table 3.2 gives some

examples of literals and their types.

Table 3-2 Examples of Literal Values

Type Examples

int -1, 0, 1, 42, 1024

float -2.5, 0.0, 0.001, 3.0e8, 1.0E-4

boolean true, false

char 'A', 'a', ' ', '.', '\n'

String "hello", "", "You are here."

Processing is able to determine the type of a literal value from its form, more commonly called its syntax:

 Numeric literals without decimal points are int (or byte or short or long) values.

 Numeric literals with a fixed decimal point (denoted as m.n with integer part m and decimal part

n, e.g., 123.4) or scientific notation (denoted xEn or xen with an integer or fixed point x and an

integer exponent n, e.g., 1.234e2 denotes 1.234 * 10
2
 or 123.4) are float values.

 The keywords true and false are boolean values.

 Individual characters enclosed by single quotes are char values.

 Sequences of characters enclosed in double quotes are String literals.

By default, positive and negative integers are treated as literals of type int. Appending the letter L or l

to a literal (e.g., -30L, 0L, +365L) causes it to be treated as long instead of int. Base-8 and base-16

representations of numbers are also allowed: a sequence of digits that begins with 0 is interpreted as an

octal (i.e., base-8) integer, provided that the digits are octal digits 0, 1, . . . 7; a sequence of digits

preceded by 0x is interpreted as a hexadecimal (i.e., base-16) integer with the usual letters A, B, . . . , F

(or lowercase equivalents) used for ten, eleven, . . . , fifteen, respectively. The following examples

illustrate this:

1
 http://processing.org/reference/

http://processing.org/reference/

-3.4-

 12 has the decimal value 12
10

 = 1  10
1
 + 2  10

0

 012 has the octal value 12
8
 = 1  8

1

 + 2  8
0

 = 10

 0x12 has the hexadecimal value 12
16

 = 1  16
1
 + 2  16

0
 = 18

By default, floating point numbers written using either fixed decimal or scientific notation are treated as

literals of type float. Appending the letter D or d to a literal (e.g., 123.4d) causes it to be treated as a

double instead of a float.
 2

3.2.2. Identifiers

In the previous chapter we used literal values in all of the example programs. While this approach is

relatively easy to understand, it is not very powerful because it limits the programs’ flexibility. The power

of programming comes from its ability to model data and manipulate and process it in various ways. This

requires that the program use names for its data values so that it can refer to them, perhaps modify them,

and process them throughout its execution. These names are called identifiers.

For example, Processing programs usually specify the dimensions of their display window and in the

previous chapter we used literal integer values for this purpose — for example,

 size(300, 225);

This statement uses literal values to set the width and height of the display window to 300 and 225 pixels,

respectively. Whenever the program needs to refer to the width of the image, it repeats the literal 300:

 point(random(300), random(225));

This statement correctly draws a point at some random location in the display window. But if we now

change the dimensions of the display window, say with

 size(150, 100);

then the values in the call to the point() method must also be changed accordingly. We would have to

manually modify our program wherever these values for the display window's width and height are used.

Doing such re-programming is not a good practice because it can easily lead to programming errors. For

example, we must change all the occurrences of 300 and 225 consistently; missing or mistyping even one

would result in an incorrect program. Also, some places where one of these literals is used might not

actually refer to one of the display window's dimensions at all but instead is used to specify a high color

intensity value that should not be changed. Doing a global replacement of 300 with 150 and 225 with 100

would then not be appropriate and would result in an incorrect program.

The problems related to inconsistent or inappropriate changes can be addressed by using named data

values to represent the width and the height of the display window and then use these names instead of

the literals throughout the program:

2
 Java, the language on which Processing is based, defaults to using double values. When a float value is

desired in Java, an f designator can be used, e.g., 123.4f.

-3.5-

// width and height are declared and assigned values here

size(width, height);

// some intervening code

point(random(width), random(height));

This code uses the identifiers width and height to refer to values representing the width and height of

the display window. Any time the program needs to use these values, it uses the appropriate variable.

One additional advantage of using named variables is improved readability. For example, the method call

random(300) assumes that programmers know what the 300 represents, while the call

random(width) makes the nature of the representation much clearer.

In Processing, an identifier must begin with a letter or underscore (_), which may be followed by any

number of additional letters, digits or underscores. This gives programmers the flexibility to use

meaningful names that suggest what they represent. Although different programmers have different

naming styles, there are certain naming conventions that are commonly practiced:

 Variables – Names for storage locations for values that can change are given in lower case. If

the name consists of multiple words, the first letter in each word following the first word is

capitalized, e.g., width, currentHeight, outputWindowHeight. (This is sometimes

referred to as "camelback" notation.)

 Constants – Names for storage locations for values that cannot change are given in all

uppercase. If the name consists of multiple words, the words are separated by an underscore,

e.g., PI, TWO_PI, MAX_OUTPUT_WIDTH.

 Methods – Names for methods are like variable names but are followed by parentheses, e.g.,

size(), strokeWeight(),

 Classes – Names for classes are like variable names but are capitalized, e.g., String.

These naming conventions are not enforced by Processing but using them is recommended because they

make it easy to determine at a glance whether a name refers to a variable, constant, method or class.

3.2.3. Declaration Statements

Keywords in Processing have predefined meanings but other identifiers in a program do not. For all such

identifiers a program must provide information to the compiler about each one before it is used. This is

done by means of declaration statements.

Primitive Types. Most programs store data values in memory locations from which these values can be

retrieved and processed. Locations whose values may change are called variables and are declared using a

variable declaration statement. To illustrate how this is done, consider the following code:

int width = 300;

int height = 225;

size(width, height);

// some intervening code ...

point(random(width), random(height));

-3.6-

This code segment declares two variables of type int named width and height, and initializes their

values to 300 and 225, respectively. Processing represents these two variables as two named memory

locations.

 width 300

height 225

This allows the programmer to set the width value to 300 in one place and refer to it by name many times

later in the program. The program can change the value but the name remains the same. This way, if the

programmer modifies the declaration of width to change the width of the output window, the value at

the memory location named width will change. All further references to that variable get the new value

thus avoiding the dangers of inconsistency and incorrect modifications.

The general form of a variable declaration is as follows:

In the first form, the value used to initialize variableName will be 0 for primitive numeric types,

false for boolean types. In the second form, the value of expression will be evaluated and used to

initialize variableName. This initialization is optional for variable declarations. The third form means

that we can combine several declarations of the same type into a single declaration; for example, the

declarations of the variables width and height in the preceding code segment could be combined into

a single declaration:

 int width = 300, height = 225;

Some programs may need data values that should not change. Such values are represented as constants.

Processing provides many predefined constants such as PI and TWO_PI which represent the

mathematical constants π and 2π, respectively. Processing allows programs to access the value of a

constant just as with the value of a variable but it prevents them from ever changing its value. Though

type variableName;

or

type variableName = expression;

or

type identifierExpressionList;

where

 type is the data type that the variable should represent;

 variableName is the identifier used to refer to the variable’s value;

 expression is any expression that returns a value whose type is type.

 identifierExpressionList is a comma-separated list of one or

more identifier expressions of the form variableName or

variableName = expression.

Variable Declaration

-3.7-

final type identifier = expression;

 type is the data type that the identifier should represent;

 identifier is used to refer to the variable’s value;

 expression is any expression that returns a value whose type is type.

Note here that the initialization part of the constant declaration is required.

Constant Declaration

Processing does not provide a constant representing the irrational number , the program can specify an

approximate value.

 final float PHI = 1.6180339887;

The general form of a constant declaration is as follows:

It is generally considered good practice to place all constant declaration statements at the beginning of the

program.
3
 This makes it easy to locate them should their values need to be reprogrammed.

3.2.4. Example Revisited

Using variables and constants, we

can design a program that annotates

the photograph shown in Figure 3-1

using divisions based inon the

golden ratio. We would like our

annotations to look like the lines

shown in the diagram shown to the

right.

Here, the x and y coordinate values

for the annotations are computed

using the following formulae.

PA= CQ = width/ 

PE = GS = height / 

With these values in mind, we can specify the desired behavior using the following algorithm.

Given:

 The constant PHI represents the golden ratio.

 We have loaded a bitmap image in the data sub-directory.

 WIDTH and HEIGHT hard-code the dimensions of the image to 300 x 225 pixels

respectively.

3
 At the beginning of the block in which they are used, for more complex programs as in the next chapter.

-3.8-

Algorithm:

1. Create a display window that is WIDTH x HEIGHT pixels.

2. Load and display the image.

3. Draw a vertical line (AB) with the x coordinate = WIDTH / PHI

4. Draw a vertical line (CD) with the x coordinate = WIDTH – (WIDTH / PHI).

5. Draw a horizontal line (EF) with the y coordinate = HEIGHT / PHI.

6. Draw a horizontal line (GH) with the y coordinate = HEIGHT – (HEIGHT / PHI).

This algorithm is similar to the ones specified in Chapter 2, but has added a set of “given” or assumed

conditions. Algorithms make assumptions that are critical to their operation, and these assumptions

should be specified clearly as shown here. For example, this algorithm, and the program implemented

from it, assumes that the width and height of the image are known in advance and hard-coded into the

program. If this assumption is violated, for example if we try to load an image that isn’t 300x225 pixels,

then the program will not display the correct annotations. It is important for anyone hoping to use this

algorithm that they can, as it were, use it for any image they’d like so as long as the image is 300x225

pixels. The algorithm can be implemented as shown below along with its rendered output.

final float PHI = 1.6180339887; // approximation of the golden ratio

 final int WIDTH = 300, HEIGHT = 225; // the image's width, height

 size(WIDTH, HEIGHT);

 image(loadImage("sydneyHarbor-300x225.jpg"), 0, 0);

 stroke(125);

 float aWidth = WIDTH/PHI, aHeight = HEIGHT/PHI;

 line(aWidth, 0, aWidth, HEIGHT); // line AB

 line(WIDTH - aWidth, 0, WIDTH - aWidth, HEIGHT); // line CD

 line(0, aHeight, WIDTH, aHeight); // line EF

 line(0, HEIGHT - aHeight, WIDTH, HEIGHT - aHeight); // line GH

Note that the line of the sailboat’s mast roughly matches the vertical line joining A and B and the line of

the horizon roughly matches the horizontal line joining G and H.

-3.9-

This program illustrates another advantage of using named variables. The variables aWidth and

aHeight represent the larger value of the golden ratio in the horizontal and vertical dimensions

respectively. Each of these values is computed once, using a variable declaration statement (numeric

expressions are discussed in the next section) and then used multiple times as arguments to the line

drawing method. This way the program performs the division operation only once, and then reuses the

value multiple times, thus reducing the amount of computation required to execute the program.

3.2.5. Using Reference Types

Although the primitive types discussed so far are adequate to represent simple values like numbers and

characters, they are not adequate to represent more complex objects like audio clips, bitmap images and

bouncing balls. To represent such objects, Processing allows programmers to create new types, which is

done by creating classes. Types created from classes are called reference types.

We discuss creating new classes in some detail in a later chapter. Here, it is important to understand how

to use reference types created by other programmers. Pre-defined reference types that we will find useful

in this text include bitmap images and audio clips.

Reference types differ from primitive types in several ways. One difference concerns how the type

definitions are loaded. Primitive types are built into the language, so they are readily available in a

program and we don't have to load them explicitly. Reference types, on the other hand, are generally not

built-in and must be imported into a program. For example, to use the AudioSnippet class, which

represents a short audio clip, the programmer must import Minim’s audio snippet class definition, as

shown here:

import ddf.minim.AudioSnippet;

This import statement tells Processing to find and load the class definition found in

ddf.minim.AudioSnippet. As with constant declarations, import statements should appear

external to any method and at the top of the program. With this definition, the user can create and play

audio clips as shown below.

Another difference between reference types and primitive types is in how values are created for each type.

Because primitive types use literals for their values and the meanings of literals are built into the

Processing compiler, primitive type values are predefined. By contrast, there are no pre-defined, literal

values for most reference types so they must be created. Creating reference objects is generally done

using the new operation, which we will discuss in detail in a later chapter, but it can also be done using a

specially-defined loading method for the given type. For example, in the previous chapter we used the

loadImage() method to create a new reference object of type PImage. This allows us to declare,

initialize and display a bitmap image as shown in the following code:

PImage anImage;

anImage = loadImage("anImageFilename.jpg");

image(anImage, 0, 0);

-3.10-

Here, the loadImage() method creates a reference object of type PImage, which is assigned as the value

of the variable anImage. No import statement is required for PImage because Processing automatically

imports the PImage class definition. We might picture the storage for this object as follows:

Here, the variable anImage contains a reference rather than a primitive value.

We will consider these aspects of reference types in more detail in later chapters, but there is one other

difference between reference and primitive types that we want to use now. Once it is created, an object

— a data value whose type is a reference type — has properties that a primitive type value does not.

Objects can provide both data attributes and methods and these properties can be accessed using dot

notation. The general form of the dot notation is as follows:

Reference objects of type PImage provide a number of useful properties. For example, we can access the

width and height of the bitmap image through its width and height attributes:

anImage.width

anImage.height

We can also access the pixel value at coordinates (15, 10) using the get() method:

 anImage.get(15, 10);

The PImage class provides other useful properties as well. See the Processing reference manual entry for

a complete specification.
4

4
 http://www.processing.org/reference/PImage.html

objectName.methodName(argumentList)

objectName.attributeName

 objectName is the name of the object that is responding to the message;

 methodName is the name of the method being called;

 attributeName is the data attribute being referenced;

 argumentList is the argument list required by the method.

Dot Notation

http://www.processing.org/reference/PImage.html

-3.11-

3.2.6. Example Revisited

One weakness of the previous version of the image analysis program is that the dimensions of the image

are hard-coded into the program. The program only works for images whose dimensions are 300  225.

We can improve the program by explicitly using the PImage reference type. For example, the image of

the fish-market pelican shown below is larger than the sailboat image in Figure 3-1 but we’d like to

annotate it in a similar manner. We can accomplish this by, instead of hard-coding the image dimensions,

using variables to store these dimensions and use these variables as arguments to the size() method;

this allows the program to load and annotate images of any size. The following algorithm is an improved

version of the one used in Section 3.2.4.

Given:

 The constant PHI represents the golden ratio.

 We have loaded a bitmap image in the data sub-directory.

Algorithm:

1. Load the image.

2. Set width = the image’s width and height = the image’s height.

3. Display the image.

4. Create an display window that is width x height pixels.

5. Draw a vertical line with the x coordinate = width / PHI.

6. Draw a vertical line with the x coordinate = width – (width / PHI).

7. Draw a horizontal line with the y coordinate = height / PHI.

8. Draw a horizontal line with the y coordinate = height – (height / PHI).

This algorithm is similar to the one shown in Section 3.2.4 except that it separates the loading from the

display of the image. This allows it to use the dimensions of the image to size the display window before

displaying the image, which gives the program more flexibility. The algorithm can be implemented as

shown here.

-3.12-

E F

G H

A C

B D S R

P Q

final

float PHI = 1.6180339887; // approximation of the golden ratio

 PImage theImage = loadImage("fishMarketPelican-500x375.jpg");

 int width = theImage.width, height = theImage.height;

 size(width, height);

 image(theImage, 0, 0);

 stroke(125);

 float aWidth = width/PHI, aHeight = height/PHI;

 line(aWidth, 0, aWidth, height); // line AB

 line(width - aWidth, 0, width - aWidth, height); // line CD

 line(0, aHeight, width, aHeight); // line EF

 line(0, height - aHeight, width, height - aHeight); // line GH

This program constructs a PImage object using loadImage(), stores it in a variable theImage and

uses the dot notation to retrieve the image's width and height from image. It stores the width and height

values in the width and height variables and uses these variables as arguments to the size()

method, thus initializing the sketch size appropriately for each image. Note that the pelican’s eye is placed

at the intersection lines CD and GH.
5

5
 Using variables as arguments to the size() method prevents Processing’s export routine from determining the

intended dimensions of the sketch. To properly support the export of applets or applications, the arguments to

size() must be literal values. This text generally ignores this restriction in order to support examples such as this

one and to present a more standard view of the use variables.

-3.13-

For those interested in audio processing, we could use the Minim reference type to play background

music while the image is being displayed. Starting with the code shown above, we make two changes.

First, at the very top of our program we add import statements to tell Processing to load the Minim

reference type:

import ddf.minim.Minim;

import ddf.minim.AudioSnippet;

Second, we add the following code to play an MP3 file containing Barber’s “Adagio for Strings” in the

background.

 Minim minim = new Minim(this);

 AudioSnippet snip = minim.loadSnippet("AdagioForStrings.mp3");

 snip.play();

 // ...

As is the case with image files, the audio file must be stored in sketch’s data sub-directory.

3.3. Expressions

A primitive expression is a sequence of one or more primitive-type objects called operands, and zero or

more operators that combine to produce a value. Thus 12 is a primitive expression consisting of one

operand (12) and no operators, producing the int value twelve. Similarly, 2.2 + 3.3 is a primitive

expression with two operands (2.2 and 3.3), one operator (+), and produces the float value 5.5. The

type of the value produced by an expression is called the type of the expression. Expressions that produce

an int value are called int expressions, expressions that produce a float value are called float

expressions, and so forth.

3.3.1. Numeric Expressions

In Processing, addition and subtraction are denoted by the usual + and -- signs. Multiplication is denoted

by *, which must be used for every multiplication. That is, to multiply n by 2, we can write 2*n or n*2

but not 2n. Division is denoted by /, which is used for both real and integer division. Another operation

closely related to integer division is the modulus or remainder operation, denoted by %, which gives the

remainder in an integer division. The following table summarizes these operators.

Table 3-3 Numeric operators

Operator Operation

 + addition, unary plus

 -- subtraction, unary minus

 * multiplication

 / real and integer division

 % modulus (remainder in integer division)

-3.14-

For the operators +, --, *, and /, the operands may be of any primitive integer or real type. If both are

integer, the result is integer, but if either is real, the result is real. For example,

 2 + 3 = 5 2 + 3.0 = 5.0

 2.0 + 3 = 5.0 2.0 + 3.0 = 5.0

 7.0 / 2.0 = 3.5 7 / 2 = 3

It is important to understand the difference between integer and real division. In the expression

3 / 4, both operands (3 and 4) are integers, so integer division is performed producing the integer

quotient 0. By contrast, in the similar expression 3.0 / 4, a real operand (3.0) is present, so real

division is performed producing the real result 0.75. One of the common problems for beginning

programmers is to remember that the value of 1/n is 0 if n is an integer different from –1, 0, or 1.

Integer division produces both a quotient and a remainder and Processing uses one operator (/) to give

the integer quotient and another operator (%) to give the remainder from an integer division. The

following are some examples:

 9 / 3 = 3 9 % 3 = 0

 86 / 10 = 8 86 % 10 = 6

 197 / 10 = 19 197 % 10 = 7

Processing also provides other numeric operators, including operations that can be applied to integer data

at the individual bit level. In the following descriptions, b, b1, and b2 denote binary digits (0 or 1); x and

y denote integers.

 Table 3-4 Bitwise Operators

Operator Operation Description

~ bitwise negation ~b is 0 if b is 1; ~b is 1 if b is 0

& bitwise and b1 & b2 is 1 if both b1 and b2 are 1;

 it is 0 otherwise

| bitwise or b1 | b2 is 1 if either b1 or b2 or both

are 1; it is 0 otherwise

^ bitwise exclusive or b1 ^ b2 is 1 if exactly one of b1 or b2 is

1; it is 0 otherwise

<< bitshift left) x << y is the value obtained by shifting

the bits in x y positions to the left

>> bitshift right x >> y is the value obtained by shifting

the bits in x y positions to the right
*

-3.15-

*
Note: There is also an unsigned right shift operator>>> that fills the vacated bit

positions at the left with 0s. >> is a signed right-shift operator that fills these

positions with the sign bit of the integer being shifted.

To illustrate the behavior of these operators, the statements
6

 byte i = 6; // 00000110

 println(i | 4); // 00000110 OR 00000100 = 00000110
 println(i & 4); // 00000110 AND 00000100 = 00100

 println(i ^ 4); // 00000110 XOR 00000100 = 00010

 println(i << 1); // 00000110 LS 1 = 00001100
 println(i >> 1); // 00000110 RS 1 = 00000011

 println(~i); // NEG 00000110 = 11111001

produce this output:

6

4
2

12

3
-7

In practice, such operations are used by methods that must inspect memory or interact directly with a

computer’s hardware, such as low-level graphics methods or operating system methods.

Operator Precedence. The order in which operators in an expression are applied is determined by a

characteristic known as operator precedence (or priority): In an expression involving several operators

the operators *, /, and % have higher precedence than (i.e., are applied before) the operators + and -.

Thus, in the expression

2 + 3 * 5

* has higher precedence than +, so the multiplication is performed before the addition; therefore, the

value of the expression is 17.

Operator Associativity. In Processing the binary operators +, -, *, /, and % are all left-associative

operators, which means that in an expression containing operators with the same priority, the left operator

is applied first. Thus,

 9 - 5 - 1

is evaluated as

 (9 - 5) - 1 = 4 - 1 = 3

 Associativity is also used in more complex expressions containing different operators of the same

priority. For example, consider

6
 Recall from chapter 1 that the println() method prints the value its argument on the text output console.

-3.16-

 7 * 10 -- 5 % 3 * 4 + 9

There are three high-priority operations, *, %, and *, and so left associativity causes the leftmost

multiplication to be performed first, giving the intermediate result

 70 -- 5 % 3 * 4 + 9

% is performed next, giving

 70 -- 2 * 4 + 9

and the second multiplication is performed last, yielding

 70 -- 8 + 9

The two remaining operations, - and +, are equal in priority, and so left associativity causes the

subtraction to be performed first, giving

 62 + 9

and then the addition is carried out, giving the final result

 71

Unary Operators. The operators + and -- can also be used as unary operators (i.e., they can be applied

to a single operand); for example, --x and +34 are allowed. Similarly, the expression 3 * --4 is a

valid Processing expression, producing the value -12. Unary operations have higher priority than *, /,

and %. Thus, the integer expression:

 -6 * +2 / -3

produces the value +4.

Using Parentheses. Parentheses can be used to change the usual order of evaluation of an expression as

determined by precedence and associativity. Parenthesized subexpressions are first evaluated in the

standard manner, and the results are then combined to evaluate the complete expression. If the

parentheses are "nested" — that is, if one set of parentheses is contained within another — the

computations in the innermost parentheses are performed first.

 To illustrate, consider the expression

 (7 * (10 -- 5) % 3) * 4 + 9

The subexpression (10 -- 5) is evaluated first, producing

 (7 * 5 % 3) * 4 + 9

Next, the subexpression (7 * 5 % 3) is evaluated left to right, giving

 (35 % 3) * 4 + 9

followed by

 2 * 4 + 9

-3.17-

Now the multiplication is performed, giving

 8 + 9

and the addition produces the final result

 17

Care should be taken in writing expressions containing two or more operations to ensure that they are

evaluated in the order intended. Even though parentheses may not be required, they should be used freely

to clarify the intended order of evaluation and to write complicated expressions in terms of simpler

expressions. It is important, however, that the parentheses balance — for each left parenthesis, a

matching right parenthesis must appear later in the expression — since an unpaired parenthesis will

result in a compilation error.

Numeric Methods. In addition to literals, constants, and variables, an operand in an expression may also

be a value computed by a method.
7
 For example, we have used the random() method in some of our

examples in earlier chapters to generate random numbers. Table 3-5 lists the more commonly used

methods provided in Processing. They, along with others, are described in detail in Processing's web

reference library (http://www.processing.org/reference). Unless noted otherwise, each of these methods

takes arguments of type float and returns a value of type float.

 Table 3-5 Some Processing Methods

Method Description

abs(v) Absolute value of v (integer or real)

pow(x, y) x
y

sqrt(x) Square root of x

ceil(x) Smallest float ≥ x that is equal to an integer

floor(x) Largest float ≤ x that is equal to an integer

rint(x) int value closest to x

round(x) long value closest to x (an int if x is float)

max(v, w) Maximum of v and w (integer or real)

min(v, w) Minimum of v and w (integer or real)

exp(x) ex

log(x) Natural logarithm of x

7
 Methods that return values (in contrast to void methods that do not) are also commonly called functions because

they are used like functions in mathematics.

-3.18-

Thus, to calculate the square root of 5, we can write

 sqrt(5.0)

As a more complicated example, if we wish to calculate√ , we could write

 sqrt(pow(b, 2) -- 4.0 * a * c)

Note that if the value of the expression

 pow(b, 2) -- 4.0 * a * c

is negative, then an error results because the square root of a negative number is not defined.

Processing also provides the methods for trigonometric functions described in Table 3-6. These methods

are very important and useful tools in graphics programming.
8

 Table 3-6 Trigonometric Methods

Method Description

sin(x) Sine of x radians

cos(x) Cosine of x radians

tan(x) Tangent of x radians

atan2(x) Angle between –π and π whose tangent is x

degrees(x) The degree equivalent of x radians

radians(x) The radian equivalent of x degrees

3.3.2. Promotion and Casting

Implicit Type Conversion — Promotion. The programs shown above each contained a statement like

 int width = 300, height = 225;

and later

 float aWidth = width/PHI, aHeight = height/PHI;

which were used to determine where we should draw lines to annotate a photo. In the last statement,

integer values — width and height — were divided by a real value PHI and the resulting values

were assigned to real variables — aWidth and aHeight. In such mixed-type expressions, Processing

automatically converts an integer value to a real value as needed and performs the operation. Thus, when

8
 For a quick review of trigonometry, see the excellent tutorial at http://processing.org/learning/trig/ prepared by

Professor Ira Greenberg.

-3.19-

the two division operations are to performed, they are first converted to 300.0/1.6180229887 and

225.0/1.6180229887 and the divisions carried out, producing real values for aWidth and aHeight.

Note, however, that the values of width and height themselves do not change.

To understand how types are automatically converted to other types in expressions, suppose we arrange

Processing's numeric data types in a list in descending order according to how much memory is used to

store values of these types (see Table 3.1):

double


float


long


int



short (and char)


byte

In mixed-type expressions, values whose type is lower in this listing will be converted to those that are

higher before the computation is performed. Thus, for example, the result produced by 3/4 is 0, but

3.0/4 or 3/4.0 are computed as 3.0/4.0 which produces 0.75.

As a result of such type conversions referred to as promotion, byte, short, int, and long (and

char) integer values and float and double real values can be freely intermixed in most numeric

expressions, which is a great convenience for the programmer. However, promotion does have its limits.

It is a one-way relationship as the arrows in the preceding diagram suggest. This means that we can write

 float product = 1;

and the int value 1 will be converted to a float value and associated with product. But Processing

will not compile either of the following statements and will output error messages like those shown:

 int count = 1.0; // ERROR: cannot convert float to int

 int intVal = 1L; // ERROR: cannot convert from long to int

If the type of one expression is the same as or can be promoted to the type of another expression, then the

first expression is said to be type-compatible (or simply compatible) with the second expression. That is,

the "can be promoted to" arrows in the preceding diagram also denote the “is compatible with”

relationship. The one-way property of the arrows means that although an int is compatible with a

double, a double is not compatible with an int. Also, the boolean type is not shown in the

diagram because it is not compatible with any of the other primitive types.

Explicit Type Conversion — Casting. Sometimes it is necessary to convert an expression from one

type to another. For such situations, Processing does provide a way that a programmer can do this. To

illustrate, suppose we want to round a double value doubleVal to an int. One might think we need

only use the round() method,

-3.20-

 int intVal = round(doubleVal); // Error!

but this statement does not compile because round() requires an argument of type float.

 However, there is an alternative: use a type-cast, or simply, cast, where an expression of the form

 typename(expression)

or

 (typename)(expression)

can be used to convert expression to a value of type typename.
9
 Using int for the typename will

convert a real value to an integer by truncating the fractional part. For example, the double variable

doubleVal is assigned the value 15.678,

 double doubleVal = 15.678;

the statement

 int intValue = int(doubleVal + 0.5);

or

 int intValue = (int)(doubleVal + 0.5);

will add 0.5 to doubleVal giving 16.178 after which the type-cast will truncate the fractional part

(.178) and assign the value 16 to intValue. Similarly, if doubleVal had the value 15.378,

 double doubleVal = 15.378;

adding 0.5 produces 15.878, so the value 15 would be assigned to intValue.

3.3.3. Assignment Expressions

In several of our examples we have used an assignment statement of the form

 variable = expression;

which uses the assignment operator (=) to change the value of a variable. In fact, what we were actually

doing was converting an assignment expression of the form

 variable = expression

to a statement by appending a semicolon.
10

 In this assignment expression, expression must be type-

compatible with variable. When it is executed,

9
 The second form for type-casting is the one used in Java.

-3.21-

1. expression is evaluated to produce some value v;

2. the value of variable is changed to v, and

3. v is the value of the entire expression.

For example, if xValue and yValue are declared by

 float xValue = 0, yValue = 0;

then memory locations are allocated to xValue and yValue and they are each defined with the value

zero. We might picture this as follows:

Now consider the assignment statements:

 xValue = 25.0;
 yValue = Math.sqrt(xValue);

The first statement changes the value of xValue to 25.0,

and then (using the value of xValue), the second statement changes the value of yValue to 5.0:

It is important to remember that for primitive types, an assignment statement is a replacement statement.

Some beginning programmers forget this and write an assignment statement like

 a = b;

when the statement

 b = a;

is intended. These two statements produce very different results: The first assigns the value of b to a,

leaving b unchanged, and the second assigns the value of a to b, leaving a unchanged.

10

 In fact, we could do this with any expression. For example, 1 + 2; and -3.1416; are valid statements; they

just doesn't do anything very interesting!

2.5

9.37

a

b

9.37

9.37

a

b

a = b;

2.5

9.37

a

b

2.5

2.5

a

b

b = a;

2.5

9.37

a

b

2.5

2.5

a

b

b = a;

0.0 xValue

0.0 yValue

25.0 xValue

0.0 yValue

25.0 xValue

5.0 yValue

-3.22-

To illustrate further the replacement property of an assignment, suppose that the integer variables alpha

and beta have values 357 and 59, respectively, and that we wish to interchange these values. For this,

we use a third integer variable temp to store the value of alpha while we assign beta's value to

alpha; then we can assign this stored value to beta.

 temp = alpha;

 alpha = beta;
 beta = temp;

In a valid assignment statement, the variable whose value is to be changed must appear to the left of the

assignment operator (=), and a type-compatible expression must appear on the right. The following table

shows several invalid Processing assignments along with explanations of why they are not valid. The

variables x, y, number, and grade have the following declarations:

float x, y;

int number;

char grade;

Table 3-7 Invalid Processing assignments

Statement Error

5 = number; The left operand of an assignment must be a variable.

x + 3.5 = y; The left operand of an assignment cannot be an expression.

grade = "ABCC"; Type String is not compatible with type char.

number = x; Type double is not compatible with type int.

number = false; Type boolean is not compatible with any other type.

Assignment as an Operation. We have seen that an assignment

 variable = expression

produces three actions:

1. expression is evaluated to produce some value v;

2. the value of variable is changed to v, and

3. v is the value of the entire assignment expression.

p
t
m

al ha
be a
te p

59

?

te m p = a lpha ; be t a = t emp; al p ha = beta ;

59

al p ha
be t a
te m p

59

59
al p ha
be t a
te m p

59

357

al p ha
be t a
te m p

357

357 357

357 357

-3.23-

Thus far in our discussion, we have concentrated on actions (1) and (2), but we now turn our attention to

action (3) in this description.

 In the expression

 2 + 3

+ is the operator, its operands are 2 and 3, and it produces the value 5. Similarly, in the assignment

 number = 4

= is the operator, its operands are num and 4, and it produces the value 4; as a "side effect" it also stores

the value 4 in number's memory location. As another example, suppose the value of number is 4 and

consider the expression

 number = number * 2

The * is applied first because it has higher precedence (the priority of the = operator is lower than almost

all other operators),

 number = (number * 2)

producing the result 8. The assignment thus becomes

 number = 8

which changes the value of number to 8 and produces the result 8. Although we are usually most

interested in the side effect of the assignment — of changing the value of number to 8 — it is important

to remember that the assignment operator = is a value-producing binary operator whose result is the

value assigned to the left operand

Chaining Assignment Operators. Because = is a value-producing operator, several assignment

operators can be chained together in a single statement such as

 x = y = 2.5;

which is equivalent to the two separate statements

 y = 2.5;

 x = y;

Unlike most of the arithmetic operators, the assignment operator = is right-associative, so that in the

statement

 x = y = 2.5;

the rightmost = is applied first,

 x = (y = 2.5);

which changes the value of y to 2.5; and produces the value assigned to y (i.e., 2.5). The assignment

thus becomes

 x = (2.5);

-3.24-

which changes the value of x to 2.5. It also produces the assigned value 2.5 as its result so the statement

becomes

 2.5;

which is a valid Processing statement; it just doesn't do anything.

Because of right-associativity and the value-producing property of =, chained assignments can be used to

assign the same value to a group of variables; for example,

 a = b = c = d = 1;

will set each of d, c, b, and a to 1.

Increment and Decrement Operations. Algorithms often contain instructions of the form

 "Increment counter by 1."

One way to encode this instruction in Processing is

 counter = counter + 1;

Such a statement in which the same variable appears on both sides of the assignment operator often

confuses beginning programmers. Although we read English sentences from left to right, execution of

this statement goes from right to left because + has higher priority than =:

 1. counter + 1 is evaluated

 2. This value is assigned to counter (overwriting its previous value).

For example, if counter has the value 16, then

 1. The value of counter + 1 (16 + 1 = 17), is computed; and

 2. This value is assigned as the new value for counter:

As we have seen, the old value of the variable is lost because it is replaced with a new value.

 This kind of assignment (i.e., incrementing a variable) occurs so often that Processing provides a

special unary increment operator ++ for this operation. It can be used as a postfix operator,

 variableName++

or as a prefix operator,

 ++variableName

16 counter 17 counter
counter = counter + 1;

-3.25-

where variableName is an integer variable whose value is to be incremented by 1. Thus, the

assignment statement

 counter = counter + 1;

can also be written

 counter++;

or

 ++counter;

The difference between the postfix and prefix use of the operator is subtle. If the increment operator is

being used simply to increment a variable as a stand-alone statement, then it does not matter whether the

prefix or postfix form is used. Both of these statements produce exactly the same result; namely, the value

of counter is incremented by 1.

To explain the difference, consider the following program segments where counter, number1, and

number2 are int variables:

 //POSTFIX: Use first, then increment Output

 counter = 10;

 println("counter = " + counter); counter = 10

 number1 = counter++;

 println("number1 = " + number1); number1 = 10

 println("counter = " + counter); counter = 11

and

 Output //PREFIX: Increment first, then use

 counter = 10;

 println("counter = " + counter); counter = 10

 number1 = ++counter;

 println("number1 = " + number1); number1 = 11

 println("counter = " + counter); counter = 11

Note that after execution of both sets of statements, the value of counter is 11. However, in the first

set of assignments, the value assigned to number1 is 10, whereas in the second set of assignments, the

value assigned to number1 is 11. To understand this difference, we must remember that increment

expressions are “shortcut” assignment expressions and thus produce values. If counter has the value

10, then in the prefix expression

 ++counter

-3.26-

counter is incremented (to 11) and the value produced by the expression is the incremented value (11).

By contrast, if counter again has the value 10, then in the postfix expression

 counter++

counter is still incremented (to 11), but the value produced by the expression is the original value (10).

Put differently, the assignment

 number2 = ++counter;

is equivalent to

 counter = counter + 1;

 number2 = counter;

while the assignment

 number1 = counter++;

is equivalent to

 number1 = counter;

 counter = counter + 1;

It does not matter whether the prefix or postfix form is used if the increment operator is being used simply

to increment a variable as a stand-alone statement:

 counter++;

or

 ++counter;

Both of these statements have the same side-effect; namely, the value of counter is incremented by 1.

Just as you can increment a variable's value with the ++ operator, you can decrement the value of a

variable (i.e., subtract 1 from it) using the decrement operator (- -), For example, the assignment

statement

 counter = counter - 1;

can be written more compactly as

 counter--;

(or --counter;). The prefix and postfix versions of the decrement operator behave in a manner

similar to the prefix and postfix versions of the increment operator.

Other Assignment Shortcuts. The increment and decrement operations are special cases of a more

general assignment that changes the value of a variable using some expression that involves its original

value. For example, the instruction

 "Add counter to sum"

-3.27-

implicitly changes the value of sum to the value of sum + counter. This can be encoded in Processing as

 sum = sum + counter;

The following diagram illustrates this for the case in which the integer variables sum and counter have

the values 120 and 16, respectively.

This operation occurs so frequently that Processing provides special operators for it. Instead of writing

 sum = sum + counter;

we can write

 sum += counter;

to accomplish the same thing.

 A similar shortcut is provided for each of the other arithmetic operators. For example,

 number = number / 2;

can be written

 number /= 2;

In general, a statement of the form

 alpha = alpha  beta;

can be written :

 alpha = beta;

where  is any of the arithmetic operators +, -, *, /, or %, or one of the bitwise operators &, |, ^, <<,

>>, or >>>. Each of the following is, therefore, an acceptable variation of the assignment operator:

 +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, >>>=

Like the regular assignment operator, each of these is right-associative and produces the value assigned as

its result, which means that they can be chained together. This is not good programming practice,

however, because it produces expressions for which it can be difficult to follow how they are evaluated.

Chaining such operators together should normally be avoided so that the readability of the program does

not suffer. Programs that are cleverly written but difficult to read are of little use because they are too

costly to maintain.

120 sum sum = sum + counter;

16 counter

136 sum

16 counter

-3.28-

3.3.4. Logical Expressions

In Processing, the primitive type boolean has two literals: false and true. A boolean expression is

thus a sequence of operands and operators that combine to produce one of the boolean values, false or

true.

The operators that are used in the simplest boolean expressions test some relationship between their

operands. For example, the boolean expression

 radius >= 0

which compares the (variable) operand radius and the (literal) operand 0 using the greater-than-or-

equal-to relationship, produces the value true if the value of radius is nonnegative, but produces the

value false if the value of radius is negative. Similarly, the Processing boolean expression

 count == 5

tests the equality relationship between the operands count and 5, producing the value true if the value

of count is 5 and the value false otherwise.

Note: Be sure to use the == operator for equality comparisons, and not = (assignment).

Trying to compare two values using the = operator will produce a compiler error.

Operators like >= and == that test a relationship between two operands are called relational operators,

and they are used in boolean expressions of the form

 expression
1
 RelationalOperator expression

2

where expression
1
 and expression

2
 are two compatible expressions, and the

RelationalOperator may be any of the following:

Relational

Operator
Relation Tested

< Is less than

> Is greater than

== Is equal to

!= Is not equal to

<= Is less than or equal to

>= Is greater than or equal to

These relational operators can be applied to operands of any of the primitive types: char, int, float,

double, and so on. For example, if x, a, b, and c are of type float, and numerator and

-3.29-

demoninator are of type int, then the following are valid boolean expressions formed using these

relational operators:

 x < 5.2

 b * b >= 4.0 * a * c

 numerator == 50

 denominator != 0

Compound boolean Expressions. Many relationships are too complicated to be expressed using only

the relational operators. For example, a typical test score is governed by the mathematical relationship

0  test score  100

which is true if the test score is between 0 and 100 (inclusive), and is false otherwise. However, this

relationship cannot be correctly represented in Processing by the expression

 0 <= testScore <= 100

The reason is that these relational operators are left-associative, and so the preceding expression is

processed by the Processing compiler as

 (0 <= testScore) <= 100

The Processing compiler determines that the sub-expression

 (0 <= testScore)

produces a boolean value, which it then tries to use as an operand for the second <= operator, giving

the expression

 (aBooleanValue <= 100)

At this point, the compiler generates an error, because boolean and int values are not compatible and

thus cannot be compared (even with a cast).

To avoid this difficulty, we must rewrite the mathematical expression

0  test score  100

in a different form:

(0  test score) and (test score  100)

This expression can be correctly coded in Processing, because Processing provides logical operators that

combine boolean expressions to form compound boolean expressions. These operators are defined as

follows:

-3.30-

Logical

Operator

Logical

Expression

Name of

Operation

Description

! !p
Not

(Negation)

!p is false if p is true; !p is true

if p is false.

&& p && q
And

(Conjunction)

p && q is true if both p and q are

true; it is false otherwise.

|| p || q
Or

(Disjunction)

p || q is true if either p or q or

both are true; it is false otherwise.

These definitions are summarized by the following truth tables, which display all possible values for two

conditions p and q and the corresponding values of the logical expression:

p !p p q p && q p || q

true false true true true true

false true true false false true

 false true false true

 false false false false

We can thus use the && operator to represent the mathematical expression

(0  test score) and (test score  100)

by the compound boolean expression

(0 <= testScore) && (testScore <= 100)

This expression will correctly evaluate the relationship between 0, testScore, and 100, for all

possible values of testScore.

Short-Circuit Evaluation. An important feature of the && and || operators is that they do not always

evaluate their second operand. For example, if p is false, then the condition

 p && q

is false, regardless of the value of q, and so Processing does not evaluate q. Similarly, if p is true,

then the condition

 p || q

is true, regardless of the value of q, and so Processing does not evaluate q. This approach is called

short-circuit evaluation, and has two important benefits:

-3.31-

1. One boolean expression can be used to guard a potentially unsafe operation in a second

boolean expression

 2. A considerable amount of time can be saved in the evaluation of complex conditions

As an illustration of the first benefit, consider the boolean expression

 (n != 0) && (x < 1.0 / n)

No division-by-zero error can occur in this expression, because if n is 0, then the first expression

 (n != 0)

is false and the second expression

 (x < 1.0 / n)

is not evaluated. Similarly, no division-by-zero error will occur in evaluating the condition

 (n == 0) || (x >= 1.0 / n)

because if n is 0, the first expression

 (n == 0)

is true and the second expression is not evaluated.

Operator Precedence. A boolean expression that contains an assortment of arithmetic operators,

relational operators, and logical operators is evaluated using the following precedence (or priority) and

associativity rules:

Operator Priority Associativity

() higher Left

!, ++, --,

- (unary), + (unary)

(type-cast), new

 Right

/, *, % Left

+, - Left

<, >, <=, >= Left

==, != Left

&& Left

|| Left

=, +=, *=, . . . lower Right

-3.32-

An operator with a higher priority number has higher precedence and is applied before an operator with a

lower priority number.

Because it is difficult to remember so many precedence levels, it is helpful to remember the following:

 Parenthesized subexpressions are evaluated first.

 *, /, and % have higher precedence than + and -.

 ! is the highest-precedence logical operator.

 Every relational operator has higher precedence than the logical operators && and ||.

 Numeric operators have higher precedence than relational and/or logical operators (except !).

 Use parentheses for all the other operators to clarify the order in which they are applied.

To illustrate, consider the boolean expression:

 x - (y + z) < a / b + c

where x, y, z, a, b, and c are all of type double. The parenthesized subexpression (y + z) is

evaluated first, producing an intermediate real value v1 and the expression becomes

 x - v1 < a / b + c

Of the remaining operators, / has the highest priority, so it is applied next producing some intermediate

value v2:

 x - v1 < v2 + c

In the resulting expression, - and + are applied next, from left to right (because of left-associativity),

producing some intermediate values v3 and v4:

 v3 < v4

Finally, the < operator is used to compare the last two (real) intermediate values and produces the value

of the expression (false or true).

3.3.5. Character and String Expressions

As we have seen, Processing uses the type char to represent individual characters. This includes the

uppercase letters A through Z; lowercase a through z; common punctuation symbols such as the

semicolon (;), comma (,), and period (.); and special symbols such as +, =, and >.

We have also seen that char literals are usually written in Processing as single character symbols

enclosed in apostrophes (or single quotes). For example,

 'A', '@', '3', '+'

-3.33-

are all examples of Processing char literals. The apostrophe is thus used to delimit (i.e., surround and

distinguish) char literals from other items in a Processing program.

Using an apostrophe as a delimiter raises the question, What is the character literal for an apostrophe? A

similar question arises for characters such as the newline character, for which there is no corresponding

symbol; newline characters “move” the output from the end of one line to the beginning of the next. For

such characters that have a special purpose and cannot be described using the normal approach,

Processing provides escape sequences, comprised of a backslash and another character. For example, the

character literal for an apostrophe can be written as

 '\''

and the newline character by

 '\n'

Table 3-8 lists the escape sequences provided in Processing.

Table 3-8 Processing Character Escape Sequences

Character Escape Sequence

Backspace (BS)

Horizontal tab (HT)

Newline or Linefeed (NL or LF)

Carriage return (CR)

Double quote (")

Single quote (')

Backslash (\)

With Unicode hexadecimal code hhhh

\b

\t

\n

\r

\"

\'

\\

\uhhhh

As the last escape sequence indicates, Processing represents characters using the Unicode encoding

scheme (see below) and any Unicode character can be generated from its hexadecimal code.

char Expressions. Compared to the other primitive types, there are very few predefined operations for

objects of type char. Such objects can be defined and initialized in a manner similar to int and

double objects; for example,

 final char MIDDLE_INITIAL = 'C';

 char direction = 'N'; // N, S, E or W

Character values can be assigned in the usual manner,

 direction = 'E';

-3.34-

but there are no shortcuts for char assignments comparable to those for numbers.

 Values of type char can be compared using the relational operators. Such comparisons are

performed using the Unicode numeric codes, so the expression

 'A' < 'B'

produces true because the Unicode value for A (65) is less than the Unicode value for B (66). Similarly,

the expression

 'a' < 'b'

produces the value true, because the Unicode value for a (97) is less than the Unicode value for b (98).

The boolean expression

 'a' < 'A'

is false, because the Unicode value for a (97) is not less than the Unicode value for A (65).

Compound boolean expressions can also be used to compare non-numeric values. For example, suppose

we are solving a problem whose solution requires that a character variable letter must have an

uppercase value. Such a condition might be expressed in Processing using a compound boolean

expression:

 ('A' <= letter) && (letter <= 'Z')

The String Reference Type. The String type plays a very important role in Processing, in that most

input and output is (by default) accomplished through String values. As a result, it is important to

become familiar with Processing’s String class and its capabilities. We introduce the String type

here, and will study it in more detail in Chapter 6.

String Literals. We have seen that the String reference type allows a sequence of characters to be

represented as a single object. As such, String literals consist of zero or more characters (including

char escape sequences) surrounded by double-quotes. The following are thus valid String literals:

 ""

 "123"

 "\n\tEnter the rectangle's width and height: "

 "\u0048\u0069\u0021"

As we noted earlier, most reference type values must be constructed using the new operator and a

constructor method. The String type is unusual in this regard because Processing provides String

literals that can be used to initialize or assign values to String variables. Thus instead of having to

write declarations such as

 String firstName = new String("Jane"),

-3.35-

we can simply use

 String lastName = "Doe";

String Operations. Processing’s String class provides a rich set of operations for manipulating

String values. Perhaps the most frequently used is the String concatenation (+) operator which,

given two String operands, produces a String consisting of the left operand followed by the right

operand. For example, given the preceding declarations, we could use the statement

 println(firstName + " " + lastName);

which first concatenates the String literals "Jane" and " " to produce "Jane " which is then

concatenated with "Doe" and the resulting literal "Jane Doe" output to the text output window.

If one of the operands to the + operator is a String and the other is one of the primitive types, then the

non-String operand is automatically converted to a String and + is treated as the concatenation

operator. Thus, the statements

 int two = 2;

 String robot = "R" + two + "D" + two;

build a String object whose value is "R2D2".

We might picture the storage for this object as follows:

As this picture indicates, a String is an indexed variable, which means that the individual characters

within the String can be accessed via an integer index (shown below the character entries). In

Processing, String's charAt() method is used for this. The first character in a String always has

index 0, so the expression

 robot.charAt(0)

produces the char value 'R', the expression

 robot.charAt(1)

produces the char value '2', and so on.

In addition to the concatenation operator and charAt() method, the Processing String class provides

the String-related methods shown in Table 3-9 (See the String class API documentation for the

complete list.)

 Table 3-9 String Methods

-3.36-

Method Description

charAt() Returns the character at the specified index

equals() Compares a string to a specified object

indexOf() Returns the index value of the first occurrence of a

character within the input string

length() Returns the number of characters in the input string

substring() Returns a new string that is part of the input string

toLowerCase() Converts all the characters to lower case

toUpperCase() Converts all the characters to upper case

3.4. Revisiting the Example

This section considers the use of the golden ratio in web design. The proportions that give pleasing

photographic design can also give pleasing layouts for web content, so we’d like to build a web-page

using the proportions we’ve used to annotate photographs. We’d like our web-page to include panes for a

header, a footer, content and sidebar/navigation. A sketch of this goal, using the Phi-based ratio notation

discussed in Section 3.1, is shown here.

This sketch shows that a number of the size relationships are proportional to the golden ratio, including

the width and height of the web-page itself, the widths of the content and sidebar frames, and the height

of the header and footer relative to the rest of the screen. The following algorithm lays out the design.

Given:

 The constant PHI represents the golden ratio (used as the ratio between the larger and smaller

sections).

http://processing.org/reference/String_charAt_.html
http://processing.org/reference/String_equals_.html
http://processing.org/reference/String_indexOf_.html
http://processing.org/reference/String_length_.html
http://processing.org/reference/String_substring_.html
http://processing.org/reference/String_toLowerCase_.html
http://processing.org/reference/String_toUpperCase_.html

-3.37-

 The constant PHI_FACTOR represents 1 – 1/PHI (used as the ratio between the smaller and

larger sections).

 The width and height of the display window are 600 and (600 / PHI).

Algorithm:

1. Create an display window that is width x height pixels.

2. Set headHeight = height * PHI_FACTOR * PHI_FACTOR.

3. Display a header rectangle headHeight high with the label “Header”.

4. Display a labeled content rectangle with coordinates (0, headHeight), width width/PHI

and height height – 2 * headHeight.

5. Display a labeled sidebar rectangle with coordinates (width/PHI, headHeight), width

width * PHI_FACTOR and height height – 2*PHI_FACTOR.

6. Display a labeled footer rectangle with coordinates (0, height – headHeight) and with

height headHeight.

This algorithm can be implemented as follows:

 /**

 * This sketch uses the golden ratio for web design.

 *

 * @author nyhl, jnyhoff, kvlinden, snelesen

 * @version Fall, 2011

 */

 final float PHI = 1.6180339887, PHI_FACTOR = 1 - 1/PHI;

 final int WIDTH = 600;

 int height = int(WIDTH / PHI);

 int fontSize = WIDTH/15, textPadding = WIDTH/40;

 String caption1 = "Heading", caption2 = "Content",

 caption3 = "Sidebar", caption4 = "Footer";

size(WIDTH, height);

stroke(0);

textFont(createFont("Calibri", fontSize));

// Header

fill(175, 100, 200);

float headHeight = height * PHI_FACTOR * PHI_FACTOR;

rect(0, 0, WIDTH, headHeight);

fill(0);

text(caption1, textPadding, fontSize);

// Content

fill(50, 200, 150);

rect(0, headHeight, WIDTH/PHI, height - 2 * headHeight);

fill(0);

text(caption2, textPadding, headHeight + fontSize);

// Sidebar

fill(50, 150, 225);

rect(WIDTH/PHI, headHeight,

 WIDTH*PHI_FACTOR, height-2*headHeight);

-3.38-

fill(0);

text(caption3, WIDTH/PHI + textPadding, headHeight + fontSize);

// Footer

fill(225, 200, 100);

rect(0, height - headHeight, WIDTH, headHeight);

fill(0);

text(caption4, textPadding, height - headHeight + fontSize);

The program uses several constants as we have used in the past. Additionally, the program uses several

variables of type int: fontSize for the size of the font (Calibri) used for the captions; and

textPadding for the amount of space to leave to the left of these captions. It also uses four String

variables for the captions: caption1, caption2, caption3, and caption4.
11

 Several of the

operations described in this chapter are used to calculate the dimensions and locations of the rectangles

and captions. Finally, the code uses the createFont() method to create a font object; this is a

alternate method for creating fonts dynamically rather than using the font tool discussed in the previous

chapter. This approach to building fonts has the advantage of allowing the program to determine the

nature of the font, but the disadvantage of being much slower than using pre-built fonts.

11

 An argument could probably be made that all of the variables in this program should really be constants since they

never change during the course of the execution of the program.

