
-3.1- 

Chapter 3.   Types and Expressions 

The last chapter introduced programming with some rather simple examples. The main programming 

elements that we used were methods provided in Processing and our programs consisted of calls to these 

methods to perform certain actions such as opening a display window of a certain size, drawing various 

geometric shapes such as points, lines, rectangles, and ellipses in this window along with images and 

fonts.  In this chapter we focus on data, how it can be stored and processed in a program. 

3.1. Example: Two-Dimensional Design and Layout 

Photographers compose photographs with 

careful attention to fundamental design 

principles. Creating such works of art may seem 

to be effortless, even arbitrary, but this is far 

from the case. Consider the photograph shown 

in Figure 3-1. It includes a sailboat and the sun 

setting on the horizon. Rarely do photographers 

place the item or items of interest directly in the 

center of the photo or in arbitrary locations. 

Rather, they are positioned in certain pleasing 

proportional relations with one another. 

The question of what constitutes a “pleasing” 

proportional relationship has fascinated 

philosophers, mathematicians, artists and others 

for centuries.  One of the most famous answers 

to this question dates back to the 4
th
 century BC 

when the Ancient Greeks studied and used what 

has come to be known as the golden ratio, 

golden mean, golden section, or sectio divina 

(“divine section”) because it occurs in so many 

places in nature, architecture, and art, as well as in other phenomena.  This ratio is defined by the problem 

of dividing a line segment so that the ratio of its length to the larger part is equal to the ratio of the larger 

part to the smaller part, as illustrated in Figure 3-2 . 

This golden ration is commonly denoted by a Greek lower case phi, written .  If we substitute  for the 

ratio a/b in the first part of the formula in Figure 3-2, we obtain 



1
1


  

 

Figure 3-1. A sample photograph 

 

Figure 3-2. The golden ratio 
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which can be rewritten 
2
 –  – 1 = 0.  Solving this using the quadratic formula from algebra gives the 

following irrational number as the unique positive solution of this equation: 

. . . 871.61803398
2

51



  

This golden ratio crops up in an incredible number of places and, in particular, has been used as a design 

tool in art and architecture. 

In this chapter we will study the basic data types provided in Processing and the kinds of expressions that 

can be used.  We will use them to build a simple tool for analyzing proportional design — annotating an 

image by drawing lines overlaying the image that indicate pleasing proportional relationships and focus 

points based on the golden ratio. 

3.2. Types 

In nearly all programming languages, each data value must have a specified data type that informs the 

computer how that value is to be represented, stored, and manipulated. To allow Processing to ensure that 

it is handling all data items properly, it requires that the program specify the type of each data item before 

it is used. This is done by using a declaration of that item. 

Processing provides two kinds of types: primitive types and reference types.  Primitive types are the 

types used to specify the basic data elements in Processing and in most programming languages:  integers, 

real numbers, boolean (or logical) values, and single characters. Table 3.1 lists Processing’s primitive 

types, giving their names, brief descriptions, ranges of values they may have, and the number of bits 

required to store such values. 

Table 3-1  Processing's Primitive Types 

Name Description Values 
Number of 

Bits 
byte Very small integers –128 (=(2

7
)  through +127  (= 2

7
 – 1)

 8 

short Small integers –32768 (= –2
15

 ) through +32767 (= 2
15

 – 1) 16 

int Integers –2147483648 (= –2
31

)through +2147483647 (= 2
31

 – 1) 32 

long Large integers –2
63

 through +2
63

 – 1 64 

float Real numbers –3.4028235  10
38

 through +3.4028235  10
38

 (approx.) 32 

double Large real numbers 
–1.7976931348623157  10

308 
through 

+1.7976931348623157  10
308

(approx.) 
64 

char Single characters 
Letters, numerals and other characters with Unicode 

representations as integers from 0 through 65535 (= 2
16

 – 1) 
16 

boolean Logical values true or false  1 

Reference types are built from other types. Most often, these other types are classes, discussed in Chapter 

7; instances of classes are called objects. The type of an object must be a reference type. Reference types 

include String for text strings, and PImage for images. These are but two of hundreds of reference 
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types that Processing provides. (Descriptions of many of the most important types can be found in the 

Processing web reference library.
 1
) 

The set of primitive types is fixed and Processing reserves their names (see Table 3.2) as keywords that 

may not be used for other reasons in a program. The collection of reference types, on the other hand, can 

be expanded by adding programmer-defined types and Processing does not reserve their names as 

keywords.  One consequence of this is that reference types must be explained to the compiler, either in the 

program file itself or in a predefined library. 

3.2.1. Literals 

A data value of a given type, coded directly into a program, is called a literal. Table 3.2 gives some 

examples of literals and their types. 

Table 3-2 Examples of Literal Values 

Type Examples 

int -1, 0, 1, 42, 1024 

float -2.5, 0.0, 0.001, 3.0e8, 1.0E-4 

boolean true,  false 

char 'A',  'a',  ' ',  '.',  '\n' 

String "hello",  "",  "You are here." 

Processing is able to determine the type of a literal value from its form, more commonly called its syntax:  

 Numeric literals without decimal points are int (or byte or short or long) values. 

 Numeric literals with a fixed decimal point (denoted as m.n with integer part m and decimal part 

n, e.g., 123.4) or scientific notation (denoted xEn or xen with an integer or fixed point x and an 

integer exponent n, e.g., 1.234e2 denotes 1.234 * 10
2
 or 123.4) are float values. 

 The keywords true and false are boolean values. 

 Individual characters enclosed by single quotes are char values. 

 Sequences of characters enclosed in double quotes are String literals.  

By default, positive and negative integers are treated as literals of type int. Appending the letter L or l 

to a literal (e.g., -30L, 0L, +365L) causes it to be treated as long instead of int. Base-8 and base-16 

representations of numbers are also allowed:  a sequence of digits that begins with 0 is interpreted as an 

octal (i.e., base-8) integer, provided that the digits are octal digits 0, 1, . . . 7;  a sequence of digits 

preceded by 0x is interpreted as a hexadecimal (i.e., base-16) integer with the usual letters A, B, . . . , F 

(or lowercase equivalents) used for ten, eleven, . . . , fifteen, respectively. The following examples 

illustrate this: 

                                                      
1
 http://processing.org/reference/ 

http://processing.org/reference/
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 12 has the decimal value 12
10

 = 1  10
1
 + 2  10

0
 

 012 has the octal value 12
8
 = 1  8

1

 + 2  8
0

 = 10 

 0x12 has the hexadecimal value 12
16

 = 1  16
1
 + 2  16

0
 = 18 

By default, floating point numbers written using either fixed decimal or scientific notation are treated as 

literals of type float. Appending the letter D or d to a literal (e.g., 123.4d) causes it to be treated as a 

double instead of a float.
 2
 

3.2.2. Identifiers 

In the previous chapter we used literal values in all of the example programs. While this approach is 

relatively easy to understand, it is not very powerful because it limits the programs’ flexibility. The power 

of programming comes from its ability to model data and manipulate and process it in various ways. This 

requires that the program use names for its data values so that it can refer to them, perhaps modify them, 

and process them throughout its execution.  These names are called identifiers. 

For example, Processing programs usually specify the dimensions of their display window and in the 

previous chapter we used literal integer values for this purpose — for example, 

 size(300, 225); 

This statement uses literal values to set the width and height of the display window to 300 and 225 pixels, 

respectively. Whenever the program needs to refer to the width of the image, it repeats the literal 300: 

 point( random(300), random(225) );  

This statement correctly draws a point at some random location in the display window. But if we now 

change the dimensions of the display window, say with  

 size(150, 100); 

then the values in the call to the point() method must also be changed accordingly.  We would have to 

manually modify our program wherever these values for the display window's width and height are used.  

Doing such re-programming is not a good practice because it can easily lead to programming errors. For 

example, we must change all the occurrences of 300 and 225 consistently; missing or mistyping even one 

would result in an incorrect program. Also, some places where one of these literals is used might not 

actually refer to one of the display window's dimensions at all but instead is used to specify a high color 

intensity value that should not be changed.  Doing a global replacement of 300 with 150 and 225 with 100 

would then not be appropriate and would result in an incorrect program.  

The problems related to inconsistent or inappropriate changes can be addressed by using named data 

values to represent the width and the height of the display window and then use these names instead of 

the literals throughout the program: 

                                                      
2
 Java, the language on which Processing is based, defaults to using double values. When a float value is 

desired in Java, an f designator can be used, e.g., 123.4f. 
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// width and height are declared and assigned values here 

size(width, height); 

// some intervening code 

point( random(width), random(height) ); 

This code uses the identifiers width and height to refer to values representing the width and height of 

the display window. Any time the program needs to use these values, it uses the appropriate variable. 

One additional advantage of using named variables is improved readability. For example, the method call 

random(300) assumes that programmers know what the 300 represents, while the call 

random(width) makes the nature of the representation much clearer. 

In Processing, an identifier must begin with a letter or underscore (_), which may be followed by any 

number of additional letters, digits or underscores. This gives programmers the flexibility to use 

meaningful names that suggest what they represent. Although different programmers have different 

naming styles, there are certain naming conventions that are commonly practiced: 

 Variables – Names for storage locations for values that can change are given in lower case. If 

the name consists of multiple words, the first letter in each word following the first word is 

capitalized, e.g., width, currentHeight, outputWindowHeight.  (This is sometimes 

referred to as "camelback" notation.) 

 Constants – Names for storage locations for values that cannot change are given in all 

uppercase. If the name consists of multiple words, the words are separated by an underscore, 

e.g., PI, TWO_PI, MAX_OUTPUT_WIDTH. 

 Methods – Names for methods are like variable names but are followed by parentheses, e.g., 

size(), strokeWeight(), 

 Classes – Names for classes are like variable names but are capitalized, e.g., String. 

These naming conventions are not enforced by Processing but using them is recommended because they 

make it easy to determine at a glance whether a name refers to a variable, constant, method or class. 

3.2.3. Declaration Statements 

Keywords in Processing have predefined meanings but other identifiers in a program do not. For all such 

identifiers a program must provide information to the compiler about each one before it is used. This is 

done by means of declaration statements.  

Primitive Types.  Most programs store data values in memory locations from which these values can be 

retrieved and processed. Locations whose values may change are called variables and are declared using a 

variable declaration statement.  To illustrate how this is done, consider the following code: 

int width = 300; 

int height = 225; 

size(width, height); 

// some intervening code ... 

point(random(width), random(height)); 
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This code segment declares two variables of type int named width and height, and initializes their 

values to 300 and 225, respectively. Processing represents these two variables as two named memory 

locations. 

 width  300 

height  225 

 

This allows the programmer to set the width value to 300 in one place and refer to it by name many times 

later in the program. The program can change the value but the name remains the same. This way, if the 

programmer modifies the declaration of width to change the width of the output window, the value at 

the memory location named width will change. All further references to that variable get the new value 

thus avoiding the dangers of inconsistency and incorrect modifications. 

The general form of a variable declaration is as follows: 

 

 

 

 

 

 

 

 

 

 

In the first form, the value used to initialize variableName will be 0 for primitive numeric types, 

false for boolean types.  In the second form, the value of expression will be evaluated and used to 

initialize variableName.  This initialization is optional for variable declarations. The third form means 

that we can combine several declarations of the same type into a single declaration; for example, the 

declarations of the variables width and height in the preceding code segment could be combined into 

a single declaration: 

 int width = 300, height = 225; 

Some programs may need data values that should not change. Such values are represented as constants. 

Processing provides many predefined constants such as PI and TWO_PI which represent the 

mathematical constants π and 2π, respectively. Processing allows programs to access the value of a 

constant just as with the value of a variable but it prevents them from ever changing its value.  Though 

type variableName; 

or 

type variableName = expression; 

or 

type identifierExpressionList; 

where 

 type is the data type that the variable should represent; 

 variableName is the identifier used to refer to the variable’s value; 

 expression is any expression that returns a value whose type is type.  

 identifierExpressionList is a comma-separated list of one or 

more identifier expressions of the form variableName or 

variableName = expression.  

Variable Declaration 
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final type identifier = expression; 

 type is the data type that the identifier should represent; 

 identifier  is used to refer to the variable’s value; 

 expression is any expression that returns a value whose type is type. 

Note here that the initialization part of the constant declaration is required. 

 

Constant Declaration 

Processing does not provide a constant representing the irrational number , the program can specify an 

approximate value. 

 final float PHI = 1.6180339887; 

The general form of a constant declaration is as follows: 

 

 

 

 

 

It is generally considered good practice to place all constant declaration statements at the beginning of the 

program.
3
  This makes it easy to locate them should their values need to be reprogrammed.   

3.2.4. Example Revisited 

Using variables and constants, we 

can design a program that annotates 

the photograph shown in Figure 3-1 

using divisions based inon the 

golden ratio. We would like our 

annotations to look like the lines 

shown in the diagram shown to the 

right. 

Here, the x and y coordinate values 

for the annotations are computed 

using the following formulae. 

PA= CQ = width/           

PE = GS  = height /  

With these values in mind, we can specify the desired behavior using the following algorithm. 

Given:  

 The constant PHI represents the golden ratio. 

 We have loaded a bitmap image in the data sub-directory. 

 WIDTH and HEIGHT hard-code the dimensions of the image to 300 x 225 pixels 

respectively. 

                                                      
3
 At the beginning of the block in which they are used, for more complex programs as in the next chapter. 
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Algorithm: 

1. Create a display window that is WIDTH x HEIGHT pixels. 

2. Load and display the image. 

3. Draw a vertical line (AB) with the x coordinate = WIDTH / PHI 

4. Draw a vertical line (CD) with the x coordinate = WIDTH – (WIDTH / PHI). 

5. Draw a horizontal line (EF) with the y coordinate = HEIGHT / PHI. 

6. Draw a horizontal line (GH) with the y coordinate = HEIGHT – (HEIGHT / PHI). 

 

This algorithm is similar to the ones specified in Chapter 2, but has added a set of “given” or assumed 

conditions. Algorithms make assumptions that are critical to their operation, and these assumptions 

should be specified clearly as shown here. For example, this algorithm, and the program implemented 

from it, assumes that the width and height of the image are known in advance and hard-coded into the 

program. If this assumption is violated, for example if we try to load an image that isn’t 300x225 pixels, 

then the program will not display the correct annotations. It is important for anyone hoping to use this 

algorithm that they can, as it were, use it for any image they’d like so as long as the image is 300x225 

pixels. The algorithm can be implemented as shown below along with its rendered output.  

 

final float PHI = 1.6180339887; // approximation of the golden ratio 

  final int WIDTH = 300, HEIGHT = 225;  // the image's width, height 

 

  size(WIDTH, HEIGHT); 

  image(loadImage("sydneyHarbor-300x225.jpg"), 0, 0); 

 

  stroke(125); 

  float aWidth = WIDTH/PHI, aHeight = HEIGHT/PHI; 

  line(aWidth, 0, aWidth, HEIGHT);                    // line AB 

  line(WIDTH - aWidth, 0, WIDTH - aWidth, HEIGHT);    // line CD 

  line(0, aHeight, WIDTH, aHeight);                   // line EF 

  line(0, HEIGHT - aHeight, WIDTH, HEIGHT - aHeight); // line GH 

 

Note that the line of the sailboat’s mast roughly matches the vertical line joining A and B and the line of 

the horizon roughly matches the horizontal line joining G and H. 
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This program illustrates another advantage of using named variables. The variables aWidth and 

aHeight represent the larger value of the golden ratio in the horizontal and vertical dimensions 

respectively. Each of these values is computed once, using a variable declaration statement (numeric 

expressions are discussed in the next section) and then used multiple times as arguments to the line 

drawing method. This way the program performs the division operation only once, and then reuses the 

value multiple times, thus reducing the amount of computation required to execute the program. 

3.2.5. Using Reference Types 

Although the primitive types discussed so far are adequate to represent simple values like numbers and 

characters, they are not adequate to represent more complex objects like audio clips, bitmap images and 

bouncing balls. To represent such objects, Processing allows programmers to create new types, which is 

done by creating classes. Types created from classes are called reference types. 

We discuss creating new classes in some detail in a later chapter. Here, it is important to understand how 

to use reference types created by other programmers. Pre-defined reference types that we will find useful 

in this text include bitmap images and audio clips.  

Reference types differ from primitive types in several ways. One difference concerns how the type 

definitions are loaded. Primitive types are built into the language, so they are readily available in a 

program and we don't have to load them explicitly. Reference types, on the other hand, are generally not 

built-in and must be imported into a program. For example, to use the AudioSnippet class, which 

represents a short audio clip, the programmer must import Minim’s audio snippet class definition, as 

shown here: 

import ddf.minim.AudioSnippet; 

 

This import statement tells Processing to find and load the class definition found in 

ddf.minim.AudioSnippet.  As with constant declarations, import statements should appear 

external to any method and at the top of the program.  With this definition, the user can create and play 

audio clips as shown below. 

Another difference between reference types and primitive types is in how values are created for each type. 

Because primitive types use literals for their values and the meanings of literals are built into the 

Processing compiler, primitive type values are predefined. By contrast, there are no pre-defined, literal 

values for most reference types so they must be created.  Creating reference objects is generally done 

using the new operation, which we will discuss in detail in a later chapter, but it can also be done using a 

specially-defined loading method for the given type. For example, in the previous chapter we used the 

loadImage() method to create a new reference object of type PImage. This allows us to declare, 

initialize and display a bitmap image as shown in the following code: 

PImage anImage; 

anImage = loadImage("anImageFilename.jpg"); 

image(anImage, 0, 0); 
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Here, the loadImage() method creates a reference object of type PImage, which is assigned as the value 

of the variable anImage. No import statement is required for PImage because Processing automatically 

imports the PImage class definition. We might picture the storage for this object as follows: 

 

 

 

 

Here, the variable anImage contains a reference rather than a primitive value.  

We will consider these aspects of reference types in more detail in later chapters, but there is one other 

difference between reference and primitive types that we want to use now.  Once it is created, an object 

— a data value whose type is a reference type — has properties that a primitive type value does not.  

Objects can provide both data attributes and methods and these properties can be accessed using dot 

notation. The general form of the dot notation is as follows: 

 

 

 

 

 

 

Reference objects of type PImage provide a number of useful properties. For example, we can access the 

width and height of the bitmap image through its width and height attributes: 

anImage.width 

anImage.height 

 

We can also access the pixel value at coordinates (15, 10) using the get() method: 

  anImage.get(15, 10); 

The PImage class provides other useful properties as well. See the Processing reference manual entry for 

a complete specification.
4
  

  

 

                                                      
4
 http://www.processing.org/reference/PImage.html 

objectName.methodName(argumentList) 

objectName.attributeName 

 objectName is the name of the object that is responding to the message; 

 methodName is the name of the method being called; 

 attributeName is the data attribute being referenced; 

 argumentList is the argument list required by the method. 

 

Dot Notation 

http://www.processing.org/reference/PImage.html
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3.2.6. Example Revisited 

One weakness of the previous version of the image analysis program is that the dimensions of the image 

are hard-coded into the program. The program only works for images whose dimensions are 300  225. 

We can improve the program by explicitly using the PImage reference type. For example, the image of 

the fish-market pelican shown below is larger than the sailboat image in Figure 3-1 but we’d like to 

annotate it in a similar manner.  We can accomplish this by, instead of hard-coding the image dimensions, 

using variables to store these dimensions and use these variables as arguments to the size() method; 

this allows the program to load and annotate images of any size. The following algorithm is an improved 

version of the one used in Section 3.2.4. 

Given:  

 The constant PHI represents the golden ratio. 

 We have loaded a bitmap image in the data sub-directory. 

Algorithm: 

1. Load the image. 

2. Set width = the image’s width and height = the image’s height. 

3. Display the image. 

4. Create an display window that is width x height pixels. 

5. Draw a vertical line with the x coordinate = width / PHI. 

6. Draw a vertical line with the x coordinate = width – (width / PHI). 

7. Draw a horizontal line with the y coordinate = height / PHI. 

8. Draw a horizontal line with the y coordinate = height – (height / PHI). 

 

This algorithm is similar to the one shown in Section 3.2.4 except that it separates the loading from the 

display of the image. This allows it to use the dimensions of the image to size the display window before 

displaying the image, which gives the program more flexibility. The algorithm can be implemented as 

shown here. 
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final 

float PHI = 1.6180339887; // approximation of the golden ratio 
 

   PImage theImage = loadImage("fishMarketPelican-500x375.jpg"); 

   int width = theImage.width, height = theImage.height; 
 

   size(width, height); 

   image(theImage, 0, 0); 
 

   stroke(125); 

   float aWidth = width/PHI, aHeight = height/PHI; 

   line(aWidth, 0, aWidth, height);                    // line AB 

   line(width - aWidth, 0, width - aWidth, height);    // line CD 

   line(0, aHeight, width, aHeight);                   // line EF 

   line(0, height - aHeight, width, height - aHeight); // line GH 

 

This program constructs a PImage object using loadImage(), stores it in a variable theImage and 

uses the dot notation to retrieve the image's width and height from image. It stores the width and height 

values in the width and height variables and uses these variables as arguments to the size() 

method, thus initializing the sketch size appropriately for each image. Note that the pelican’s eye is placed 

at the intersection lines CD and GH.
5
 

                                                      
5
 Using variables as arguments to the size() method prevents Processing’s export routine from determining the 

intended dimensions of the sketch. To properly support the export of applets or applications, the arguments to 

size() must be literal values. This text generally ignores this restriction in order to support examples such as this 

one and to present a more standard view of the use variables. 
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For those interested in audio processing, we could use the Minim reference type to play background 

music while the image is being displayed.  Starting with the code shown above, we make two changes.  

First, at the very top of our program we add import statements to tell Processing to load the Minim 

reference type: 

 

import ddf.minim.Minim; 

import ddf.minim.AudioSnippet; 

 

Second, we add the following code to play an MP3 file containing Barber’s “Adagio for Strings” in the 

background.   
  

      Minim minim = new Minim(this); 

      AudioSnippet snip = minim.loadSnippet("AdagioForStrings.mp3"); 

      snip.play(); 

      // ... 

 

As is the case with image files, the audio file must be stored in sketch’s data sub-directory. 

3.3. Expressions 

A primitive expression is a sequence of one or more primitive-type objects called operands, and zero or 

more operators that combine to produce a value. Thus 12 is a primitive expression consisting of one 

operand (12) and no operators, producing the int value twelve. Similarly, 2.2 + 3.3 is a primitive 

expression with two operands (2.2 and 3.3), one operator (+), and produces the float value 5.5.  The 

type of the value produced by an expression is called the type of the expression.  Expressions that produce 

an int value are called int expressions, expressions that produce a float value are called float 

expressions, and so forth. 

3.3.1. Numeric Expressions 

In Processing, addition and subtraction are denoted by the usual + and -- signs.  Multiplication is denoted 

by *, which must be used for every multiplication.  That is, to multiply n by 2, we can write 2*n or n*2  

but not 2n.   Division is denoted by /, which is used for both real and integer division.  Another operation 

closely related to integer division is the modulus or remainder operation, denoted by %, which gives the 

remainder in an integer division. The following table summarizes these operators. 

Table 3-3 Numeric operators 

Operator  Operation 

 + addition, unary plus 

 -- subtraction, unary minus 

 * multiplication 

 / real and integer division 

 % modulus (remainder in integer division) 
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For the operators +, --, *, and /, the operands may be of any primitive integer or real type.  If both are 

integer, the result is integer, but if either is real, the result is real.  For example, 

      2 + 3 = 5     2 + 3.0 = 5.0 

      2.0 + 3 = 5.0    2.0 + 3.0 = 5.0 

      7.0 / 2.0 = 3.5   7 / 2 = 3 

It is important to understand the difference between integer and real division. In the expression  

3 / 4, both operands (3 and 4) are integers, so integer division is performed producing the integer 

quotient 0. By contrast, in the similar expression 3.0 / 4, a real operand (3.0) is present, so real 

division is performed producing the real result 0.75.  One of the common problems for beginning 

programmers is to remember that the value of 1/n is 0 if n is an integer different from –1, 0, or 1. 

Integer division produces both a quotient and a remainder and Processing uses one operator (/) to give 

the integer quotient and another operator (%) to give the remainder from an integer division.  The 

following are some examples: 

     9 / 3 = 3     9 %  3 =  0 

     86 / 10 = 8    86 % 10 = 6 

     197 / 10 = 19    197 % 10 =  7 

Processing also provides other numeric operators, including operations that can be applied to integer data 

at the individual bit level. In the following descriptions, b, b1, and b2 denote binary digits (0 or 1); x and 

y denote integers. 

   Table 3-4 Bitwise Operators 

Operator Operation Description 

~ bitwise negation ~b is 0 if b is 1; ~b is 1 if b is 0 

& bitwise and b1 & b2 is 1 if both b1 and b2 are 1; 

 it is 0 otherwise 

| bitwise or b1 | b2 is 1 if either b1 or b2 or both  

are 1; it is 0 otherwise 

^ bitwise exclusive or b1 ^ b2 is 1 if exactly one of b1 or b2 is 

1; it is 0 otherwise 

<< bitshift left) x << y is the value obtained by shifting 

the bits in x y positions to the left 

>> bitshift right x >> y is the value obtained by shifting 

the bits in x y positions to the right 
* 
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*
Note:  There is also an unsigned right shift operator>>> that fills the vacated bit 

positions at the left with 0s.  >> is a signed right-shift operator that fills these 

positions with the sign bit of the integer being shifted. 

To illustrate the behavior of these operators, the statements
6
 

 byte i = 6;       // 00000110 

 println(i | 4);   // 00000110 OR  00000100 = 00000110 
 println(i & 4);   // 00000110 AND 00000100 = 00100 

 println(i ^ 4);   // 00000110 XOR 00000100 = 00010 

 println(i << 1);  // 00000110 LS  1        = 00001100 
 println(i >> 1);  // 00000110 RS  1        = 00000011 

 println(~i);      // NEG 00000110          = 11111001 

 

produce this output: 

6 

4 
2 

12 

3 
-7 

In practice, such operations are used by methods that must inspect memory or interact directly with a 

computer’s hardware, such as low-level graphics methods or operating system methods.   

Operator Precedence.  The order in which operators in an expression are applied is determined by a 

characteristic known as operator precedence (or priority):  In an expression involving several operators 

the operators *, /, and % have higher precedence than (i.e., are applied before) the operators + and -.  

Thus, in the expression  

2 + 3 * 5 

* has higher precedence than +, so the multiplication is performed before the addition; therefore, the 

value of the expression is 17. 

Operator Associativity.   In Processing the binary operators +, -, *, /, and % are all left-associative 

operators, which means that in an expression containing operators with the same priority, the left operator 

is applied first. Thus, 

 9 - 5 - 1 

is evaluated as  

 (9 - 5) - 1 = 4 - 1 = 3 

 Associativity is also used in more complex expressions containing different operators of the same 

priority.   For example, consider 

                                                      
6
 Recall from chapter 1 that the println() method prints the value its argument on the text output console. 
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 7 * 10 -- 5 % 3 * 4 + 9 

There are three high-priority operations, *, %, and *, and so left associativity causes the leftmost 

multiplication to be performed first, giving the intermediate result 

 70 -- 5 % 3 * 4 + 9 

% is performed next, giving 

 70 -- 2 * 4 + 9 

and the second multiplication is performed last, yielding 

 70 -- 8 + 9 

The two remaining operations, - and +, are equal in priority, and so left associativity causes the 

subtraction to be performed first, giving 

 62 + 9 

and then the addition is carried out, giving the final result 

 71 

 

Unary Operators.  The operators + and -- can also be used as unary operators (i.e., they can be applied 

to a single operand); for example, --x and  +34 are allowed.  Similarly, the expression 3 * --4 is a 

valid Processing expression, producing the value -12.    Unary operations have higher priority than *, /, 

and %.   Thus, the integer expression: 

 -6 * +2 / -3 

produces the value +4.   

Using Parentheses.  Parentheses can be used to change the usual order of evaluation of an expression as 

determined by precedence and associativity.   Parenthesized subexpressions are first evaluated in the 

standard manner, and the results are then combined to evaluate the complete expression.  If the 

parentheses are "nested" — that is, if one set of parentheses is contained within another — the 

computations in the innermost parentheses are performed first.  

 To illustrate, consider the expression 

 (7 * (10 -- 5) % 3) * 4 + 9 

The subexpression (10 -- 5) is evaluated first, producing 

 (7 * 5 % 3) * 4 + 9 

Next, the subexpression (7 * 5 % 3) is evaluated left to right, giving  

 (35 % 3) * 4 + 9 

followed by  

 2 * 4 + 9 
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Now the multiplication is performed, giving 

 8 + 9 

and the addition produces the final result 

 17 

Care should be taken in writing expressions containing two or more operations to ensure that they are 

evaluated in the order intended.  Even though parentheses may not be required, they should be used freely 

to clarify the intended order of evaluation and to write complicated expressions in terms of simpler 

expressions.  It is important, however, that the parentheses balance — for each left parenthesis, a 

matching right parenthesis must appear later in the expression — since an unpaired parenthesis will 

result in a compilation error. 

Numeric Methods.  In addition to literals, constants, and variables, an operand in an expression may also 

be a value computed by a method.
7
  For example, we have used the random() method in some of our 

examples in earlier chapters to generate random numbers.  Table 3-5 lists the more commonly used 

methods provided in Processing. They, along with others, are described in detail in Processing's web 

reference library (http://www.processing.org/reference). Unless noted otherwise, each of these methods 

takes arguments of type float and returns a value of type float. 

    Table 3-5  Some Processing Methods 

Method Description 

abs(v) Absolute value of v  (integer or real) 

pow(x, y) x
y

 

sqrt(x) Square root of x 

ceil(x) Smallest float ≥ x that is equal to an integer 

floor(x) Largest float ≤ x that is equal to an integer 

rint(x) int value closest to x 

round(x) long value closest to x  (an int if x is float) 

max(v, w) Maximum of v and w  (integer or real) 

min(v, w) Minimum  of v and w  (integer or real) 

exp(x)  ex 

log(x) Natural logarithm of x 

 

 

                                                      
7
 Methods that return values (in contrast to void methods that do not) are also commonly called functions because 

they are used like functions in mathematics.  
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Thus, to calculate the square root of 5, we can write 

 sqrt(5.0) 

As a more complicated example, if we wish to calculate√     , we could write 

 sqrt(pow(b, 2) -- 4.0 * a * c) 

Note that if the value of the expression 

 pow(b, 2) -- 4.0 * a * c  

is negative, then an error results because the square root of a negative number is not defined. 

Processing also provides the methods for trigonometric functions described in Table 3-6.  These methods 

are very important and useful tools in graphics programming.
8
 

 

     Table 3-6  Trigonometric Methods 

Method Description 

sin(x) Sine of x radians 

cos(x) Cosine of x radians 

tan(x) Tangent of x radians 

atan2(x) Angle between –π and π whose tangent is x 

degrees(x) The degree equivalent of x radians 

radians(x) The radian equivalent of x degrees 

3.3.2. Promotion and Casting 

Implicit Type Conversion — Promotion.  The programs shown above each contained a statement like 

 int width = 300, height = 225; 

and later 

 float aWidth = width/PHI, aHeight = height/PHI; 

which were used to determine where we should draw lines to annotate a photo.  In the last statement, 

integer values — width and height —  were divided by a real value PHI and the resulting values 

were assigned to real variables — aWidth and aHeight. In such mixed-type expressions, Processing 

automatically converts an integer value to a real value as needed and performs the operation.  Thus, when 

                                                      
8
 For a quick review of trigonometry, see the excellent tutorial at http://processing.org/learning/trig/ prepared by 

Professor Ira Greenberg. 
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the two division operations are to performed, they are first converted to 300.0/1.6180229887 and 

225.0/1.6180229887 and the divisions carried out, producing real values for aWidth and aHeight.  

Note, however, that the values of width and height themselves do not change. 

To understand how types are automatically converted to other types in expressions, suppose we arrange 

Processing's numeric data types in a list in descending order according to how much memory is used to 

store values of these types (see Table 3.1): 

double 

 
float 

 
long 

 
int 

 

short (and char) 

 
byte 

 

In mixed-type expressions, values whose type is lower in this listing will be converted to those that are 

higher before the computation is performed.  Thus, for example, the result produced by 3/4 is 0, but 

3.0/4 or 3/4.0 are computed as 3.0/4.0 which produces 0.75. 

As a result of such type conversions referred to as promotion, byte, short, int, and long (and 

char) integer values and float and double real values can be freely intermixed in most numeric 

expressions, which is a great convenience for the programmer.  However, promotion does have its limits.  

It is a one-way relationship as the arrows in the preceding diagram suggest.  This means that we can write 

 float product = 1; 

and the int value 1 will be converted to a float value and associated with product.  But Processing 

will not compile either of the following statements and will output error messages like those shown: 

 int count = 1.0;  // ERROR: cannot convert float to int 

 int intVal = 1L;  // ERROR: cannot convert from long to int 

If the type of one expression is the same as or can be promoted to the type of another expression, then the 

first expression is said to be type-compatible (or simply compatible) with the second expression.  That is, 

the "can be promoted to" arrows in the preceding diagram also denote the “is compatible with” 

relationship.  The one-way property of the arrows means that although an int is compatible with a 

double, a double is not compatible with an int.  Also, the boolean type is not shown in the 

diagram because it is not compatible with any of the other primitive types. 

Explicit Type Conversion — Casting.  Sometimes it is necessary to convert an expression from one 

type to another. For such situations, Processing does provide a way that a programmer can do this.  To 

illustrate, suppose we want to round a double value doubleVal to an int.  One might think we need 

only use the round() method,  
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 int intVal = round(doubleVal);  // Error! 

but this statement does not compile because round() requires an argument of type float. 

 However, there is an alternative: use a type-cast, or simply, cast, where an expression of the form 

 typename(expression) 

or 

 (typename)(expression) 

can be used to convert expression to a value of type typename.
9
  Using int for the typename will 

convert a real value to an integer by truncating the fractional part.  For example, the double variable 

doubleVal is assigned the value 15.678, 

 double doubleVal = 15.678; 

the statement 

 int intValue = int(doubleVal + 0.5); 

or 

 int intValue = (int)( doubleVal + 0.5); 

will add 0.5 to doubleVal giving 16.178 after which the type-cast will truncate the fractional part 

(.178) and assign the value 16 to intValue.  Similarly, if doubleVal had the value 15.378, 

 double doubleVal = 15.378; 

adding 0.5 produces 15.878, so the value 15 would be assigned to intValue. 

3.3.3. Assignment Expressions 

In several of our examples we have used an assignment statement of the form 

 variable = expression; 

which uses the assignment operator (=) to change the value of a variable.  In fact, what we were actually 

doing was converting an assignment expression of the form 

 variable = expression 
 

to a statement by appending a semicolon.
10

  In this assignment expression, expression must be type-

compatible with variable.  When it is executed, 

                                                      

9
 The second form for type-casting is the one used in Java. 
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1. expression is evaluated to produce some value v; 

2. the value of variable is changed to v, and 

3. v is the value of the entire expression. 

For example, if xValue and yValue are declared by 

 float xValue = 0, yValue = 0; 

then memory locations are allocated to xValue and yValue and they are each defined with the value 

zero. We might picture this as follows: 

 

 

Now consider the assignment statements: 

 xValue = 25.0; 
 yValue = Math.sqrt(xValue); 

The first statement changes the value of xValue to 25.0, 

 

 

and then (using the value of xValue), the second statement changes the value of yValue to 5.0: 

 

 

It is important to remember that for primitive types, an assignment statement is a replacement statement.  

Some beginning programmers forget this and write an assignment statement like 

 a = b; 

when the statement 

 b = a; 

is intended.  These two statements produce very different results:  The first assigns the value of b to a, 

leaving b unchanged, and the second assigns the value of a to b, leaving a unchanged. 

                                                                                                                                                                           
10

 In fact, we could do this with any expression.  For example, 1 + 2; and -3.1416; are valid statements; they 

just doesn't do anything very interesting! 

 
2.5 

9.37 

a 

b 

9.37 

9.37 
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b 

a = b; 

2.5 

9.37 

a 

b 

2.5 

2.5 
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b 

b = a; 

 

2.5 

9.37 

a 

b 

2.5 

2.5 

a 

b 

b = a; 

0.0 xValue 

0.0 yValue 

25.0 xValue 

0.0 yValue 

25.0 xValue 

5.0 yValue 
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To illustrate further the replacement property of an assignment, suppose that the integer variables alpha 

and beta have values 357 and 59, respectively, and that we wish to interchange these values.  For this, 

we use a third integer variable temp to store the value of alpha while we assign beta's value to 

alpha; then we can assign this stored value to beta. 

 temp = alpha; 

 alpha = beta; 
 beta = temp; 

 

In a valid assignment statement, the variable whose value is to be changed must appear to the left of the 

assignment operator (=), and a type-compatible expression must appear on the right. The following table 

shows several invalid Processing assignments along with explanations of why they are not valid.  The 

variables x, y, number, and grade have the following declarations: 

float x, y; 

int number; 

char grade; 

 
 

Table 3-7 Invalid Processing assignments 

Statement Error 

5 = number; The left operand of an assignment must be a variable. 

x + 3.5 = y; The left operand of an assignment cannot be an expression. 

grade = "ABCC"; Type String is not compatible with type char. 

number = x; Type double is not compatible with type int. 

number = false; Type boolean is not compatible with any other type. 

 

Assignment as an Operation.  We have seen that an assignment  

 variable = expression 

produces three actions: 

1. expression is evaluated to produce some value v; 

2. the value of variable is changed to v, and 

3. v is the value of the entire assignment expression. 

 
p 
t 
m 

al ha 
be a 
te p 

59 

? 

te m p   =  a lpha ; be t a   =  t emp; al p ha   =   beta ; 

59 

 

al p ha 
be t a 
te m p 

59 

59 
al p ha 
be t a 
te m p 

59 

357 

al p ha 
be t a 
te m p 

357 

357 357 

357 357 
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Thus far in our discussion, we have concentrated on actions (1) and (2), but we now turn our attention to 

action (3) in this description.   

 In the expression  

 2 + 3 

+ is the operator, its operands are 2 and 3, and it produces the value 5.  Similarly, in the assignment 

 number = 4  

= is the operator, its operands are num and 4, and it produces the value 4; as a "side effect" it also stores 

the value 4 in number's memory location. As another example, suppose the value of number is 4 and 

consider the expression 

 number = number * 2  

The * is applied first because it has higher precedence (the priority of the = operator is lower than almost 

all other operators), 

 number = (number * 2)  

producing the result 8. The assignment thus becomes 

 number = 8 

which changes the value of number to 8 and produces the result 8.  Although we are usually most 

interested in the side effect of the assignment — of changing the value of number to 8 — it is important 

to remember that the assignment operator  = is a value-producing binary operator whose result is the 

value assigned to the left operand 

Chaining Assignment Operators.  Because = is a value-producing operator, several assignment 

operators can be chained together in a single statement such as 

 x = y = 2.5; 

which is equivalent to the two separate statements 

 y = 2.5; 

 x = y; 

Unlike most of the arithmetic operators, the assignment  operator = is right-associative, so that in the 

statement 

 x = y = 2.5; 

the rightmost = is applied first, 

 x = (y = 2.5); 

which changes the value of y to 2.5; and produces the value assigned to y (i.e., 2.5).  The assignment 

thus becomes 

 x = (2.5); 
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which changes the value of x to 2.5.  It also produces the assigned value 2.5 as its result so the statement 

becomes 

 2.5; 

which is a valid Processing statement; it just doesn't do anything.   

Because of right-associativity and the value-producing property of =, chained assignments can be used to 

assign the same value to a group of variables; for example, 

 a = b = c = d = 1; 

will set each of d, c, b, and a to 1.   

Increment and Decrement Operations.  Algorithms often contain instructions of the form 

 "Increment counter by 1."   

One way to encode this instruction in Processing is 

 counter = counter + 1; 

Such a statement in which the same variable appears on both sides of the assignment operator often 

confuses beginning programmers.  Although we read English sentences from left to right, execution of 

this statement goes from right to left because + has higher priority than =: 

 1. counter + 1 is evaluated 

 2. This value is assigned to counter (overwriting its previous value). 

For example, if counter has the value 16, then  

 1. The value of counter + 1 (16 + 1 = 17), is computed; and 

 2. This value is assigned as the new value for counter: 

 

 

As we have seen, the old value of the variable is lost because it is replaced with a new value. 

 This kind of assignment (i.e., incrementing a variable) occurs so often that Processing provides a 

special unary increment operator ++ for this operation.   It can be used as a postfix operator, 

 variableName++ 

or as a prefix operator, 

 ++variableName  

16 counter 17 counter 
counter = counter + 1; 
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where variableName is an integer variable whose value is to be incremented by 1. Thus, the 

assignment statement 

 counter = counter + 1; 

can also be written 

 counter++; 

or 

 ++counter; 

The difference between the postfix and prefix use of the operator is subtle. If the increment operator is 

being used simply to increment a variable as a stand-alone statement, then it does not matter whether the 

prefix or postfix form is used. Both of these statements produce exactly the same result; namely, the value 

of counter is incremented by 1. 

To explain the difference, consider the following program segments where counter, number1, and 

number2 are int variables: 

 //POSTFIX:  Use first, then increment   Output 

 counter = 10;  

 println("counter = " + counter);    counter = 10 

 number1 = counter++;  

 println("number1 = " + number1);    number1 = 10 

 println("counter = " + counter);    counter = 11 

and 

 

 

   Output  //PREFIX:  Increment first, then use

 counter = 10;  

 println("counter = " + counter);    counter = 10 

 number1 = ++counter;  

 println("number1 = " + number1);    number1 = 11 

 println("counter = " + counter);    counter = 11 

Note that after execution of both sets of statements, the value of counter is 11.  However, in the first 

set of assignments, the value assigned to number1 is 10, whereas in the second set of assignments, the 

value assigned to number1 is 11.  To understand this difference, we must remember that increment 

expressions are “shortcut” assignment expressions and thus produce values.  If counter has the value 

10, then in the prefix expression 

  ++counter 



-3.26- 

counter is incremented (to 11) and the value produced by the expression is the incremented value (11).  

By contrast, if counter again has the value 10, then in the postfix expression 

  counter++ 

counter is still incremented (to 11), but the value produced by the expression is the original value (10).  

Put differently, the assignment 

 number2 = ++counter; 

is equivalent to 

 counter = counter + 1; 

 number2 = counter; 

while the assignment 

 number1 = counter++; 

is equivalent to 

 number1 = counter; 

 counter = counter + 1; 

It does not matter whether the prefix or postfix form is used if the increment operator is being used simply 

to increment a variable as a stand-alone statement: 

 counter++; 

or 

 ++counter; 

Both of these statements have the same side-effect; namely, the value of counter is incremented by 1. 

Just as you can increment a variable's value with the ++ operator, you can decrement the value of a 

variable  (i.e., subtract 1 from it) using the decrement operator (- - ),  For example, the assignment 

statement 

 counter = counter - 1; 

can be written more compactly as 

 counter--; 

(or --counter;).  The prefix and postfix versions of the decrement operator behave in a manner 

similar to the prefix and postfix versions of the increment operator. 

Other Assignment Shortcuts. The increment and decrement operations are special cases of a more 

general assignment that changes the value of a variable using some expression that involves its original 

value. For example, the instruction 

 "Add counter to sum" 
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implicitly changes the value of sum to the value of sum + counter.  This can be encoded in Processing as 

 sum = sum + counter; 

The following diagram illustrates this for the case in which the integer variables sum and counter have 

the values 120 and 16, respectively. 

 

 

This operation occurs so frequently that Processing provides special operators for it.  Instead of writing 

 sum = sum + counter; 

we can write  

 sum += counter; 

to accomplish the same thing.    

 A similar shortcut is provided for each of the other arithmetic operators.  For example, 

 number = number / 2; 

can be written  

 number /= 2; 

In general, a statement of the form 

 alpha = alpha  beta; 

can be written : 

 alpha = beta; 

where  is any of the arithmetic operators +, -, *, /, or %, or one of the bitwise operators &, |, ^, <<, 

>>, or >>>. Each of the following is, therefore, an acceptable variation of the assignment operator: 

 +=,    -=,    *=,    /=,    %=,    &=,    |=,    ^=,    <<=,    >>=,    >>>= 

Like the regular assignment operator, each of these is right-associative and produces the value assigned as 

its result, which means that they can be chained together.  This is not good programming practice, 

however, because it produces expressions for which it can be difficult to follow how they are evaluated.  

Chaining such operators together should normally be avoided so that the readability of the program does 

not suffer.  Programs that are cleverly written but difficult to read are of little use because they are too 

costly to maintain. 

120 sum sum = sum + counter; 

16 counter 

136 sum 

16 counter 
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3.3.4. Logical Expressions 

In Processing, the primitive type boolean has two literals: false and true. A boolean expression is 

thus a sequence of operands and operators that combine to produce one of the boolean values, false or 

true. 

The operators that are used in the simplest boolean expressions test some relationship between their 

operands.  For example, the boolean expression 

 radius >= 0 

which compares the (variable) operand radius and the (literal) operand 0 using the greater-than-or-

equal-to relationship, produces the value true if the value of radius is nonnegative, but produces the 

value false if the value of radius is negative.   Similarly, the Processing boolean expression 

 count == 5 

tests the equality relationship between the operands count and 5, producing the value true if the value 

of count is 5 and the value false otherwise.  

Note:  Be sure to use the == operator for equality comparisons, and not = (assignment).   

Trying to compare two values using the = operator will produce a compiler error.   

Operators like >= and == that test a relationship between two operands are called relational operators, 

and they are used in boolean expressions of the form 

 expression
1
 RelationalOperator expression

2
 

where expression
1
 and expression

2
 are two compatible expressions, and the 

RelationalOperator  may be any of the following:  

Relational 

Operator 
Relation Tested 

< Is less than 

> Is greater than 

== Is equal to 

!= Is not equal to 

<= Is less than or equal to  

>=  Is greater than or equal to 

 

These relational operators can be applied to operands of any of the primitive types:  char, int, float, 

double, and so on.   For example, if x, a, b, and c are of type float, and numerator and 
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demoninator are of type int, then the following are valid boolean expressions formed using these 

relational operators: 

 x < 5.2 

 b * b >= 4.0 * a * c 

 numerator == 50 

 denominator != 0 

Compound boolean Expressions.  Many relationships are too complicated to be expressed using only 

the relational operators.  For example, a typical test score is governed by the mathematical relationship 

0  test score  100 

which is true if the test score is between 0 and 100 (inclusive), and is false otherwise.  However, this 

relationship cannot be correctly represented in Processing by the expression  

 0 <= testScore <= 100 

The reason is that these relational operators are left-associative, and so the preceding expression is 

processed by the Processing compiler as 

 (0 <= testScore) <= 100 

 

 

The Processing compiler determines that the sub-expression 

 (0 <= testScore) 

produces a boolean value, which it then tries to use as an operand for the second <= operator, giving 

the expression 

 (aBooleanValue <= 100) 

At this point, the compiler generates an error, because boolean and int values are not compatible and 

thus cannot be compared (even with a cast). 

To avoid this difficulty, we must rewrite the mathematical expression 

0  test score  100 

in a different form: 

(0  test score) and (test score  100) 

This expression can be correctly coded in Processing, because Processing provides logical operators that 

combine boolean expressions to form compound boolean expressions.  These operators are defined as 

follows: 
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Logical 

Operator 

Logical 

Expression 

Name of  

Operation 

 

Description 

! !p 
Not 

(Negation) 

!p is false if p is true;  !p is true  

if p is false. 

&& p && q 
And 

(Conjunction) 

p && q  is true if both p and q  are 

true; it is false otherwise. 

|| p || q 
Or 

(Disjunction) 

p || q  is true if either p or q  or 

both are true; it is false otherwise. 

These definitions are summarized by the following truth tables, which display all possible values for two 

conditions p and q and the corresponding values of the logical expression: 

p !p  p q p && q p || q 

true false  true true true true 

false true  true false false true 

   false true false true 

   false false false false 

 

We can thus use the && operator to represent the mathematical expression 

(0  test score) and (test score  100) 

by the compound boolean expression 

(0 <= testScore) && (testScore <= 100) 

This expression will correctly evaluate the relationship between 0, testScore, and 100, for all 

possible values of testScore. 

Short-Circuit Evaluation.  An important feature of the && and || operators is that they do not always 

evaluate their second operand.  For example, if p is false, then the condition  

 p && q  

is false, regardless of the value of q, and so Processing does not evaluate q.  Similarly, if p is true, 

then the condition  

 p || q 

is true, regardless of the value of q, and so Processing does not evaluate q.  This approach is called 

short-circuit evaluation, and has two important benefits: 
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1.  One boolean expression can be used to guard a potentially unsafe operation in a second 

boolean expression 

 2. A considerable amount of time can be saved in the evaluation of complex conditions 

As an illustration of the first benefit, consider the boolean expression 

 (n != 0) && (x < 1.0 / n) 

No division-by-zero error can occur in this expression, because if n is 0, then the first expression  

 (n != 0)  

is false and the second expression  

 (x < 1.0 / n)  

is not evaluated.  Similarly, no division-by-zero error will occur in evaluating the condition 

 (n == 0) || (x >= 1.0 / n) 

because if n is 0, the first expression  

 (n == 0)  

is true and the second expression is not evaluated. 

Operator Precedence.  A boolean expression that contains an assortment of arithmetic operators, 

relational operators, and logical operators is evaluated using the following precedence (or priority) and 

associativity rules:  

Operator Priority Associativity 

() higher Left 

!, ++, --,  

- (unary), + (unary) 

(type-cast), new 

   Right 

/, *, %  Left 

+, -  Left 

<, >, <=, >=  Left 

==, !=  Left 

&&  Left 

||  Left 

=, +=, *=, . . .  lower Right 
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An operator with a higher priority number has higher precedence and is applied before an operator with a 

lower priority number.  

Because it is difficult to remember so many precedence levels, it is helpful to remember the following: 

 Parenthesized subexpressions are evaluated first. 

 *, /, and % have higher precedence than + and -. 

 ! is the highest-precedence logical operator. 

 Every relational operator has higher precedence than the logical operators && and ||. 

 Numeric operators have higher precedence than relational and/or logical  operators (except !). 

 Use parentheses for all the other operators to clarify the order in which they are applied.  

To illustrate, consider the boolean expression: 

 x - (y + z) < a / b + c 

where x, y, z, a, b, and c are all of type double.  The parenthesized subexpression (y + z) is 

evaluated first, producing an intermediate real value v1 and the expression becomes 

 x - v1 < a / b + c 

Of the remaining operators, / has the highest priority, so it is applied next producing some intermediate 

value v2:  

  x - v1 < v2  + c 

In the resulting expression, - and + are applied next, from left to right (because of left-associativity), 

producing some intermediate values v3 and v4: 

 v3 < v4 

Finally, the < operator is used to compare the last two (real) intermediate values and produces the value 

of the expression (false or true). 

3.3.5. Character and String Expressions 

As we have seen, Processing uses the type char to represent individual characters.  This includes the 

uppercase letters A through Z; lowercase a through z; common punctuation symbols such as the 

semicolon (;), comma (,), and period (.); and special symbols such as  +, =, and >.   

We have also seen that char literals are usually written in Processing as single character symbols 

enclosed in apostrophes (or single quotes).  For example,  

 'A', '@', '3', '+' 
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are all examples of Processing char literals.  The apostrophe is thus used to delimit (i.e., surround and 

distinguish) char literals from other items in a Processing program.  

Using an apostrophe as a delimiter raises the question, What is the character literal for an apostrophe?  A 

similar question arises for characters such as the newline character, for which there is no corresponding 

symbol; newline characters “move” the output from the end of one line to the beginning of the next.  For 

such characters that have a special purpose and cannot be described using the normal approach, 

Processing provides escape sequences, comprised of a backslash and another character.  For example, the 

character literal for an apostrophe can be written as 

 '\'' 

and the newline character by 

 '\n' 

Table 3-8 lists the escape sequences provided in Processing.  

 

 

Table 3-8 Processing Character Escape Sequences 

Character Escape Sequence 

Backspace  (BS) 

Horizontal tab  (HT) 

Newline or Linefeed (NL or LF) 

Carriage return (CR) 

Double quote  (") 

Single quote (') 

Backslash  (\) 

With Unicode hexadecimal code hhhh 

\b 

\t 

\n 

\r 

\" 

\' 

\\ 

\uhhhh 

As the last escape sequence indicates, Processing represents characters using the Unicode encoding 

scheme (see below) and any Unicode character can be generated from its hexadecimal code.  

char Expressions.  Compared to the other primitive types, there are very few predefined operations for 

objects of type char.  Such objects can be defined and initialized in a manner similar to int and 

double objects; for example,  

 final char MIDDLE_INITIAL = 'C'; 

 char       direction = 'N';         // N, S, E or W 

Character values can be assigned in the usual manner, 

 direction = 'E'; 



-3.34- 

but there are no shortcuts for char assignments comparable to those for numbers.   

 Values of type char can be compared using the relational operators.  Such comparisons are 

performed using the Unicode numeric codes, so the expression 

 'A' < 'B' 

produces true because the Unicode value for A (65) is less than the Unicode value for B (66). Similarly, 

the expression 

 'a' < 'b' 

produces the value true, because the Unicode value for a (97) is less than the Unicode value for b (98).   

The boolean expression 

 'a' < 'A' 

is false, because the Unicode value for a (97) is not less than the Unicode value for A (65). 

Compound boolean expressions can also be used to compare non-numeric values.  For example, suppose 

we are solving a problem whose solution requires that a character variable letter must have an 

uppercase value.  Such a condition might be expressed in Processing using a compound boolean 

expression: 

 ('A' <= letter) && (letter <= 'Z') 

The String Reference Type.   The String type plays a very important role in Processing, in that most 

input and output is (by default) accomplished through String values.  As a result, it is important to 

become familiar with Processing’s String class and its capabilities.  We introduce the String type 

here, and will study it in more detail in Chapter 6. 

String Literals.  We have seen that the String reference type allows a sequence of characters to be 

represented as a single object.  As such, String literals consist of zero or more characters (including 

char escape sequences) surrounded by double-quotes.  The following are thus valid String literals: 

 ""   

 "123" 

 "\n\tEnter the rectangle's width and height: " 

 "\u0048\u0069\u0021" 

As we noted earlier, most reference type values must be constructed using the new operator and a 

constructor method. The String type is unusual in this regard because Processing provides String 

literals that can be used to initialize or assign values to String variables.  Thus instead of having to 

write declarations such as 

 String firstName = new String("Jane"),  
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we can simply use 

 String lastName = "Doe"; 

String Operations.  Processing’s String class provides a rich set of operations for manipulating 

String values.  Perhaps the most frequently used is the String concatenation (+) operator which, 

given two String operands, produces a String consisting of the left operand followed by the right 

operand.  For example, given the preceding declarations, we could use the statement 

 println(firstName + " " + lastName); 

which first concatenates the String literals "Jane" and " " to produce "Jane " which is then 

concatenated with "Doe" and the resulting literal "Jane Doe" output to the text output window.  

If one of the operands to the + operator is a String and the other is one of the primitive types, then the 

non-String operand is automatically converted to a String and + is treated as the concatenation 

operator.  Thus, the statements 

 int two = 2; 

 String robot = "R" + two + "D" + two; 

build a String object whose value is "R2D2". 

We might picture the storage for this object as follows: 

 

 

 

As this picture indicates, a String is an indexed variable, which means that the individual characters 

within the String can be accessed via an integer index (shown below the character entries).  In 

Processing, String's charAt() method is used for this.  The first character in a String always has 

index 0, so the expression 

 robot.charAt(0) 

produces the char value 'R', the expression 

 robot.charAt(1) 

produces the char value '2', and so on. 

In addition to the concatenation operator and charAt() method, the Processing String class provides 

the String-related methods shown in Table 3-9  (See the String class API documentation for the 

complete list.) 

        Table 3-9  String Methods 



-3.36- 

Method Description 

charAt() Returns the character at the specified index 

equals() Compares a string to a specified object 

indexOf() Returns the index value of the first occurrence of a 

character within the input string 

length() Returns the number of characters in the input string 

substring() Returns a new string that is part of the input string 

toLowerCase() Converts all the characters to lower case 

toUpperCase() Converts all the characters to upper case 

3.4. Revisiting the Example 

This section considers the use of the golden ratio in web design. The proportions that give pleasing 

photographic design can also give pleasing layouts for web content, so we’d like to build a web-page 

using the proportions we’ve used to annotate photographs. We’d like our web-page to include panes for a 

header, a footer, content and sidebar/navigation. A sketch of this goal, using the Phi-based ratio notation 

discussed in Section 3.1, is shown here. 

 

This sketch shows that a number of the size relationships are proportional to the golden ratio, including 

the width and height of the web-page itself, the widths of the content and sidebar frames, and the height 

of the header and footer relative to the rest of the screen. The following algorithm lays out the design. 

Given:  

 The constant PHI represents the golden ratio (used as the ratio between the larger and smaller 

sections). 

http://processing.org/reference/String_charAt_.html
http://processing.org/reference/String_equals_.html
http://processing.org/reference/String_indexOf_.html
http://processing.org/reference/String_length_.html
http://processing.org/reference/String_substring_.html
http://processing.org/reference/String_toLowerCase_.html
http://processing.org/reference/String_toUpperCase_.html
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 The constant PHI_FACTOR represents 1 – 1/PHI (used as the ratio between the smaller and 

larger sections). 

 The width and height of the display window are 600 and (600 / PHI). 

Algorithm: 

1. Create an display window that is width x height pixels. 

2. Set headHeight = height * PHI_FACTOR * PHI_FACTOR. 

3. Display a header rectangle headHeight high with the label “Header”. 

4. Display a labeled content rectangle with coordinates (0, headHeight), width width/PHI 

and height height – 2 * headHeight. 

5. Display a labeled sidebar rectangle with coordinates (width/PHI, headHeight), width 

width * PHI_FACTOR and height height – 2*PHI_FACTOR. 

6. Display a labeled footer rectangle with coordinates (0, height – headHeight) and with 

height headHeight. 

This algorithm can be implemented as follows: 

  /** 

   * This sketch uses the golden ratio for web design. 

   * 

   * @author nyhl, jnyhoff, kvlinden, snelesen 

   * @version Fall, 2011 

   */ 

  final float PHI = 1.6180339887, PHI_FACTOR = 1 - 1/PHI; 

  final int WIDTH = 600;  

 

  int height = int(WIDTH / PHI); 

  int fontSize = WIDTH/15, textPadding = WIDTH/40; 

  String caption1 = "Heading", caption2 = "Content", 

         caption3 = "Sidebar", caption4 = "Footer"; 

size(WIDTH, height); 

stroke(0); 

textFont(createFont("Calibri", fontSize)); 
 

// Header 

fill(175, 100, 200); 

float headHeight = height * PHI_FACTOR * PHI_FACTOR; 

rect(0, 0, WIDTH, headHeight); 

fill(0); 

text(caption1, textPadding, fontSize); 

// Content 

fill(50, 200, 150); 

rect(0, headHeight, WIDTH/PHI, height - 2 * headHeight); 

fill(0); 

text(caption2, textPadding, headHeight + fontSize); 

// Sidebar 

fill(50, 150, 225); 

rect(WIDTH/PHI, headHeight,  

     WIDTH*PHI_FACTOR, height-2*headHeight); 
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fill(0); 

text(caption3, WIDTH/PHI + textPadding, headHeight + fontSize); 

// Footer 

fill(225, 200, 100); 

rect(0, height - headHeight, WIDTH, headHeight); 

fill(0); 

text(caption4, textPadding, height - headHeight + fontSize); 

 

 

 

 

The program uses several constants as we have used in the past.  Additionally, the program uses several 

variables of type int: fontSize for the size of the font (Calibri) used for the captions; and 

textPadding for the amount of space to leave to the left of these captions.  It also uses four String 

variables for the captions:  caption1, caption2, caption3, and caption4.
11

  Several of the 

operations described in this chapter are used to calculate the dimensions and locations of the rectangles 

and captions. Finally, the code uses the createFont() method to create a font object; this is a 

alternate method for creating fonts dynamically rather than using the font tool discussed in the previous 

chapter. This approach to building fonts has the advantage of allowing the program to determine the 

nature of the font, but the disadvantage of being much slower than using pre-built fonts. 

                                                      
11

 An argument could probably be made that all of the variables in this program should really be constants since they 

never change during the course of the execution of the program. 


