
15.4 An Introduction to Trees 1

TREES IN STL
The Standard Template Library does not provide any templates with Tree in their name. How-
ever, some of its containers — the set<T>, map<T1, T2>, multiset<T>, and multmap<T1,
T2> templates — are generally built using a special kind of self-balancing binary search tree
called a red-black tree. A self-balancing BST ensures that the tree is always as balanced as pos-
sible, so that searches take O(log2 n) time. The study of these trees is beyond the level of this text
and is left to the sequel.1 In this section, we take a brief look at the set<T> and map<T1, T2>
templates.

THE set<T> CONTAINER
The STL set<T> template is designed to model a mathematical set. As such, it supports the

following operations (among others):
• bool empty() — return true if and only if there are no values in the set
• int size() — return the number of values in the set
• pair<iterator, bool> insert(T aValue) — insert aValue into the set
• void erase(T aValue) — remove aValue from the set
• void clear() — erase all values from the set
• iterator find(T aValue) — return an iterator to aValue (or end(), if aValue is not

present in the set)
• int count(T aValue) — return the number of occurrences of aValue within the set
• iterator begin() — return an iterator to the first value in the set
• iterator end() — return an iterator pointing beyond the last value in the set

The assignment (=), equality (==), and less-than (<) operators are also defined for set<T>, as
well as many others.2

In keeping with the mathematical notion of a set, a set<T> will never contain duplicate val-
ues. This is a primary difference between the set<T> and multiset<T> templates: a set<T>
will ignore attempts to insert values already present in the set<T>; but a multiset<T> may
contain duplicate values, and so attempts to insert values already present in a multiset<T> will
succeed.

The following is a simple program that demonstrates using the set<T> and multset<T>
containers. It reads a sentence from the keyboard char-by-char, and inserts each character read
into a set<char> and into a multiset<char>. It then iterates through the char values in each
container, displaying each one.

1. C++: An Introduction to Data Structures by Larry Nyhoff (Upper Saddle River, NJ: Prentice Hall, Inc. 1999)

2. For a detailed treatment of these STL containers, see STL Tutorial And Reference Guide Second Edition, by
Musser, Derge, and Saini (Addison-Wesley, 2001).

2 15.4 An Introduction to Trees

Code15-1 The set<T> and multiset<T> Containers.

// setDriver.cpp demonstrates set<T> and multiset<T>.

#include <iostream> // cin, cout, ...
#include <set> // set<T>, multiset<T>, ...
using namespace std;

int main()
{
 cout << "To demonstrate set<T> vs. multiset<T>,\n"
 << " please enter a sentence: ";
 char ch;
 set<char> charSet;
 multiset<char> charMultiSet;
 for (;;)
 {
 cin.get(ch);
 if (ch == '\n') break;
 charSet.insert(ch);
 charMultiSet.insert(ch);
 }

 cout << "\nThe set<T>: ";
 for (set<char>::iterator it = charSet.begin();
 it != charSet.end(); it++)
 cout << *it << ',';
 cout << endl;

 cout << "\nThe multiset<T>: ";
 for (multiset<char>::iterator it = charMultiSet.begin();
 it != charMultiSet.end(); it++)
 cout << *it << ',';
 cout << endl;
}

Sample Run:

To demonstrate set<T> vs. multiset<T>
 please enter a sentence: A babboon blew up a balloon

The set<T>: ,A,a,b,e,l,n,o,p,u,w,

The multiset<T>: , , , , ,A,a,a,a,b,b,b,b,b,e,l,l,l,n,n,o,o,o,o,p,u,w,

Note that the set<char> contains just one instance of each character, but the multi-
set<char> contains each character (including the multiple spaces).

The STL set<T> template provides a convenient off-the-shelf container that can be used in
any situation where the mathematical properties of a set are needed.

15.4 An Introduction to Trees 3

THE map<T1, T2> CONTAINER
The STL map<T1, T2> template is sometimes called an associative array and is designed to
model a dictionary. Just as a dictionary maps a word to its definition, so a map<T1, T2> maps
an arbitrary type T1 to another arbitrary type T2.

A normal array or vector allows us to “map” integer values to the kind of value in the array.
For example, if we declare:

string friend[3] = {"Anne", "Bob", "Chris"};

then the expression:

friend[0]

produces the string value "Anne"; the expression

friend[1]

produces the string value "Bob"; and so on. In essence, our array named friend is a container
that maps the integers 0, 1, and 2 to the string values "Anne", "Bob", and "Chris", respec-
tively.

More generally, a declaration

SomeType anArray[SOME_SIZE];

declares anArray as a structure that can map the integers 0, 1, 2, ... to values of SomeType.
Thus, an array or vector lets us map int values to any other type but will not let us map an arbi-
trary type to any other type. For example, how can we map the strings "Anne", "Bob", and
"Chris" back into the integers 0, 1, and 2?

For situations where we need to map an arbitrary type T1 to another arbitrary type T2, the
Standard Template Library provides the map<T1, T2> container. For example, to map the
strings "Anne", "Bob", and "Chris" back into the integers 0, 1, and 2, we can declare:

map<string, int> iFriend;

This in essence defines iFriend as an array that associates string values with int values. We
can then “assign” mappings as follows:

iFriend["Anne"] = 0;
iFriend["Bob"] = 1;
iFriend["Chris"] = 2;

Conceptually, this builds iFriend as an array that we might visualize as follows:

[Anne] [Bob] [Chris]

0 1 2
iFriend

[0] [1] [2]

Anne Bob Chris
friend

4 15.4 An Introduction to Trees

In actuality, iFriend is built as a self-balancing binary search tree that we can visualize as fol-
lows:

The map<T1, T2> container is thus useful in any situation in which we need to map values of
some non-integer type to any other type.

Some of the operations we can perform on a map<T1, T2> include:
• bool empty() — return true if and only if the map contains no values
• int size() — return the number of values in the map
• T2 operator[](T1 aValue) — retrieve the T2 value associated with aValue
 (when used on the left-side of an assignment, create a new entry for aValue)

• int erase(T1 aValue) — erase the entry for aValue
• void clear() — erase all entries
• iterator find(T1 aValue) — return an iterator to the pair<T1, T2> containing
aValue (return end() if no such pair exists)

• int count(T1 aValue) — return the number of values whose T1 value is aValue
• iterator begin() — return an iterator to the first value in the map
• iterator end() — return an iterator pointing beyond the last value in the map

The assignment (=), equality (==), and less-than (<) operators are also defined for map<T1,
T2>, as well as many others.3

To illustrate the use of these operations, the following program presents an alternative solu-
tion to our Big-10 Mascots program from Section 6.1. This version uses a map<string,
string> to map the Big-10 universities to their mascots.

3. See Footnote 1.

iFriend
Bob 1

Anne 0

0 0

Chris 2

0 0

3

15.4 An Introduction to Trees 5

Code15-2 The map<T1, T2> Container.

/* big10Mascots.cpp stores and looks up Big-10 mascots
 in map<T1, T2>. */

#include <iostream> // cin, cout, ...
#include <map> // map<T1, T2>, ...
#include <string> // string
using namespace std;

int main()
{
 map<string, string> mascots; // build the map

 mascots["Illinois"] = "Fighting Illini";
 mascots["Indiana"] = "Hoosiers";
 mascots["Iowa"] = "Hawkeyes";
 mascots["Michigan"] = "Wolverines";
 mascots["Michigan State"] = "Spartans";
 mascots["Minnesota"] = "Golden Gophers";
 mascots["Northwestern"] = "Wildcats";
 mascots["Ohio State"] = "Buckeyes";
 mascots["Penn State"] = "Nittany Lions";
 mascots["Purdue"] = "Boilermakers";
 mascots["Wisconsin"] = "Badgers";

 for (;;) // loop:
 {
 cout << "\nTo look up a Big-10 mascot, enter the name "
 << "\n of a Big-10 school ('q' to quit): ";
 string university;
 getline(cin, university); // get a school

 if (university == "q") break; // quit?
 // look up the school
 map<string, string>::iterator it = mascots.find(university);

 if (it != mascots.end()) // if found
 // cout << "--> " << it->second << endl; // display it
 cout << "--> " << mascots[university] << endl;
 else
 cout << university << " is not a Big-10 school "
 << "(or is misspelled, not capitalized, etc?)" << endl;
}

Sample Runs:

To look up a Big-10 mascot, enter the name
 of a Big-10 school ('q' to quit): Michigan
--> Wolverines

6 15.4 An Introduction to Trees

To look up a Big-10 mascot, enter the name
 of a Big-10 school ('q' to quit): Ohio State
--> Buckeyes

To look up a Big-10 mascot, enter the name
 of a Big-10 school ('q' to quit): Missouri
Missouri is not a Big-10 school (or is misspelled, not capitalized, etc?)

To look up a Big-10 mascot, enter the name
 of a Big-10 school ('q' to quit): Minnesota
--> Golden Gophers

To look up a Big-10 mascot, enter the name
 of a Big-10 school ('q' to quit): q

Note that once we have determined that university is present in our mascots map, we can retrieve
its mascot in either of two ways. The expression:

mascots[university]

uses the subscript operator to do the retrieval. While this is readable and intuitive, it is somewhat
inefficient, because operator[] must re-search the map to find its value for university. The
more efficient approach is to use the iterator that the find() method returns, which points to the
pair<T1, T2> that each map element stores.4 The two values stored in a pair<T1, T2> can
be accessed via the public instance variables first and second, respectively. The expression:

it->second

thus retrieves the second value (i.e. the string representing the mascot) in the pair to which the
iterator it returned by find() points. This approach is somewhat harder to read, but is much
more efficient, since it uses the iterator returned by find(). Since this iterator already points to
the map-element containing university and its mascot, this approach avoids the redundant
search required by the use of operator[].

SUMMARY
In summary, the Standard Template Library uses self-balancing binary search trees called red-
black trees to implement its set<T>, multiset<T>, map<T1, T2>, and multimap<T1, T2>
containers. While these container cover a broad range of scenarios, we still occasionally need to
build our own tree, as we shall see in the next section.

4. pair<T1, T2> is yet another STL container.

