14.4 The STL list<T> Class Template 1

14.4 The STL Li1st<T> Class Template

In our description of the C++ Standard Template Library in Section 10.6 of the text, we saw that
it provides a variety of other storage containers besides vector<T> and that one of these con-
tainersis named list<T>. Now that we have seen anonymous variables and how C++ pointers
provide indirect access to them, we are ready to examine the 1ist<T> class template and its
implementation.

A LIMITATION OF vector<T>

Although vector<T>s are easy to use to store sequences of values, they do have limitations.
Onelimitation is that values can be efficiently added to the sequence only at its back. If there are

empty elements at the end of its run-time allocated array,1 the push_back() message permits

values to be appended to the back of the sequence, without the existing values having to be cop-
ied:

Before After
v. push_back(55) v. push_back(55)
88 77 66 88 77 66 55
[0] [1] [2] [0] [1] [2] [3]

Consequently, when avalue is appended to avector using push_back(), any values already in
the vector will stay in the same positions.

Why is it that vector<T> provides no corresponding push_front() (or pop_front())
functions to manipulate the front of the sequence? Because inserting and deleting values at the
front of avector requires extensive copying of values, which takestime. To insert avalue at the
front, all of the valuesin the vector must be shifted one position to make room for the new value:

1. Tomakesurethat thisisusualy the case, each timepush_back() is used to append a value to a vector whose
run-time allocated array isfull, anew array that istwice aslargeis alocated and the elements of the old array are
copied into it. If the vector has no run-time allocated array (i.e., its capacity was zero), then an array is allocated
whose capacity is implementation-dependent.

2 14.4 The STL list<T> Class Template

88 77 66 55 44 33 22 11 Before
\ \ \ \ \ \ \ \

[0] W] \2] \3] \4] \45] \46] \‘7] \

88 88 77 | 66 | 55 | as | 33 22 | 11 | Shifteachvalue
right one element

[0] [1] [2] [3] [4] [5] [6] [7] [8]
Overwrite first

929 88 77 66 55 44 33 22 11 value with 99

[0] [1] [2] [3] [4] [5] [6] [7] [8]

Infact, if aproblem requiresthat values be inserted anywhere except at the back of a sequence, a
vector<T> is not the best container for storing that sequence, because of the copying required
in shifting values to make room for the new value.

The same problem occurs when any element other than the one at the end of the sequence
must be removed. In the vector, all of the elements that follow it must be shifted one position to
the left to close the gap. The following diagram illustrates this when the first element is
removed:

99 88 77 66 55 44 33 22 11 | Before
/ / / / / / / /
[03/[1/[2/[3/[43/[53/[6/[7/[8]
| | | > > | | > .
88 77 66 55 44 33 22 11 Shift each value
left one element

For problems where many such within-the-sequence insertions and deletions are required,
STL providesthe 1ist<T> container. It allows values to be inserted or removed anywherein a
sequence without any of the copying that plagues vector<T>.

Organization of 1ist<T> Objects. To see how list<T> stores a sequence of values,
suppose that aList isdefined by

list<int> alList;
and consider the following sequence of insert operations:

aList.push_back(77);
aList_push_back(66);
aList_push_front(88);

14.4 The STL list<T> Class Template 3

A simplified picture of the resulting object aList is

alist
node | ength
3

prev v

\ " f" "

88 data| 77 66
—T — — \

next

The values 88, 77, and 66 are stored in a variation of the linked lists studied in the Section 14.3
of the text called a circular doubly-linked list with a head node. It is doubly-linked because
each node has two pointers, prev to its predecessor and next to its successor. It is circular
because the next pointer in the last node is not null, but rather pointsto the "empty" (rightmost)
node, which is the head node; and similarly, the prev pointer in the first node points to the head
node instead of being null. Note that the instance variable node (which we caled first in
LinkedList in Section 14.3 of the text) points to this head node rather than to the first node
that stores adata value.
The 1ist<T> class template declares the type Iist_node as a protected struct,? as follows:

template<class T>
class list

{
// ... previous part of list class
protected:
struct list_node
{
list_node* prev; // address of the node containing

// the previous value

2. Astruct isexactly the same asaclass, except that all of its members are by default public, whereas those of aclass
are by default private. By declaring a l i st_node as astruct within class 1 i st;, the | i st operations can directly
accessthe 1ist_node instance variables. By declaring 1 ist_node protected within class 1 i st, casual users
of class 1 ist are prevented from accessing it or its instance variables, while classes derived from i st are per-
mitted to do so.

4 14.4 The STL list<T> Class Template

T data; // the value being stored in
// this node
list_node* next; // address of the node containing
// the next value
}s
// ... remainder of list class ...

}:

Linked lists that use nodes containing two pointers are called doubly-linked lists.

Although the designers of STL chose this organization for their list<T> class template,
other organizations are possible. One of theseisasingly-linked list, like those described in Sec-
tion 14.3 of the text. They consist of a pointer to the first in a sequence of nodes, each contain-
ing the value being stored and just one link, a pointer to the next node in the sequence. The final
node in the sequence is marked by the null addressin its link member:

aSingl yLi nkedLi st

88 77 66

T =T =+

Another arrangment isacircular linked list, which isasingly-linked list, but contains a pointer
to the last node. In this arrangement, the final node's link consists of a pointer back to the first
node, providing easy access to both the last and first values in the sequence:

aCircul arlinkedList

88 77 66

Aswe shall see next, regardless of its organization, the linked structure of alist allows insertion

14.4 The STL list<T> Class Template 5

and deletion operations to be performed that do not require the extensive copying that character-
izesits vector<T> counterpart.

SOME li1st<T> OPERATIONS

In the remainder of this section, we examine a collection of 1ist<T> operations that illustrate
the flexibility provided by pointers. A complete table of the 1ist<T> operations is given in
Appendix D. of the text.

The list<T> Default-Value Constructor. Perhaps the most basic 1ist<T> operation is
the default-value constructor. When a programmer writes

list<int> alList;

the default-value constructor builds an empty linked list aList, for which a (simplified) picture
is

alist

node I ength

CV

T~——

0

As shown in the diagram, the default class constructor allocates an empty node, called a head
node, and stores the address of this node in its node instance variable. In the STL Tist<T>
class template, this head node plays a central role:

« Its next member always points to the node containing the first value in the sequence (or to
the head node, if the list is empty);

* Its prev member always points to the node containing the last value in the sequence (or to
the head node, if the list is empty); and

e Itsinstance variable isunused.

The main advantages of this organization isthat there is always at least one node in the list (i.e.,
the head node) and every node has a predecessor and a successor. These properties simplify sev-
eral of the 1ist<T> operations.

6 14.4 The STL list<T> Class Template

The size() and empty() Methods. Two of the simplest 1ist<T> operations are
size() and empty(). The size() method is a simple accessor for the Iength instance vari-
able; it returns the number of values currently stored in thelist. It might be defined as follows:

template<class T>
inline int list<T>::size() const
{

return length;

}

The empty() method is nearly as simple, returning true if there are no values in the list and
false otherwise. Its definition might be

template<class T>
inline bool list<T>::empty() const
{

return length == 0;

}

The begin() and end() Iterator Methods. As with vector<T>, the list<T> class
template provides two methods, begin() and end(), that return iterators to the front and past
the end of the list, respectively. In the 1ist<T> class template, these methods are implemented
using the pointer instance variables of the head node. More precisely, the begin() method
returns a pointer to the first node, by returning the address stored in the next member of the
head node:

aList
node I ength
3
y
iterator 1list<T>::begin()
88 77 66 {
return node—>next;

By contrast, the end() function returns a pointer pointing beyond the last node that contains a
value by returning the address of the head node:

14.4 The STL list<T> Class Template 7

alist
node I ength
3
v
iterator list<T>::end()
88 77 66 {
1]] return node;
\ }

The begin() method thus returns an iterator to the first value in the list, and the end () method
returns an iterator that points beyond the final valuein the list.

Iterators and Pointers. From our discussion of iteratorsin preceding chapters and our dis-
cussion of pointers in this chapter, it should be evident that an iterator is an abstraction of a
pointer, hiding some of its details and eliminating some of its hazards.

Toillustrate, the 1ist<T> class template declaresa 1ist<T>: :iterator asan object con-
taining its own list_node pointer named node as ainstance variable. With much of the detail
omitted, the class can be thought of as having a structure somewhat like the following:

template<class T>
class list

{

// ... previous list members omitted ...

public:
class iterator // ... some simplification here ...

{
protected:

list_node* node; // ... and here ...

// ... other iterator members omitted...

};

// ... other list members omitted ...

}:

The iterator class overloadsoperator* so that it returns the value of theinstance vari-
able in the list_node pointed to by the iterator’ s node member. Here is a simplified defini-

8 14.4 The STL list<T> Class Template

tion:

template<class T>
inline T list<T>::iterator::operator*()

{
}

The iterator class aso overloads operator++ to “increment” the iterator to the next nodein
the list:

return node->data;

template<class T>
inline iterator list<T>::iterator::operator++() // prefix version
{

node = node->next;

return *this;

}

template<class T>
inline iterator list<T>::iterator::operator++(int i) // postfix

{
iterator tmp = node;
node = node->next;
return tmp;

s

and overloadsoperator-- similarly to “decrement” the iterator to the previous node in the list.

The front() and back() Members. Likevector<T>, list<T> provides methodsto
access thefirst and last values in the sequence. These are implemented by dereferencing the iter-
ators returned by the begin() and end() operations:

template<class T>
inline T& list<T>::front()
{

}

return *begin();

template<class T>
inline T& list<T>::back()
{

}

Since the list<T>::iterator class overloads operator™ to return the instance vari-
able of the list_node whose addressis stored in its node member, an expression like

return *(--end());

*begin()

14.4 The STL list<T> Class Template 9

can be used to access the first value in the sequence, and an expression like

*(--end())

can be used to access the last value in the sequence. Note that operator* has higher prece-
dence than operator--, so parentheses must be used in this last expression to ensure that the
iterator returned by end () is decremented before it is dereferenced.

The insert(), push_front(), and push_back() Methods. To add avaueto a
sequence, the 1ist<T> class template provides severa operations, including:

e aList.push_back(newVvalue) ; which appends newValue to aList;
e aList.push_front(newvalue) ; which prepends newvalue to aList; and

e alList.insert(anlterator, newValue); which inserts newvalue into aList ahead
of the value pointed to by anlterator.

Of these three, insert() is the most genera operation—the push_back() and
push_front() operations are implemented using insert()— and we will therefore focus our
discussion oniit.

Toillustrateits behavior, suppose that aList isthefollowing list<int>, and position is
alist<int>::iterator that hasbeen positioned at the node containing 55 (perhaps by using
the STL find() agorithm):

aList
node I ength
3
v
\ " " f"
88 77 55
— — — \

node

posi tion

Now suppose that the following statement is executed:

10

14.4 The STL list<T> Class Template

aList.insert(position, 66);

The insert() operation gets a new node,3 assigns its instance variable the vaue 66,
assigns its prev member the address of the node containing 77, and assigns its next member
the address of the node containing 55:

alist
tmp
~ node I ength
66 |—m | 3
\ " f "

88 77 55

—T — — \

node

tmp = new
tmp—>data
tmp—>next
tmp—>prev

list_node;
newValue;

= position.node;

(*position.node) .prev;

posi tion

The next pointer in the node before position isthen assigned the address of the new node:

3. Weshow the new node being allocated using new; however, the STL list class actually managesits own collection
of 1ist<T> nodes. Only when this pool of nodes becomes empty doesit use new to add more nodes to the pool.
The insert() method issuesacall to get_node (), an operation that gets the next available node from this

pool of nodes, refilling it with more nodes when it is depleted.

14.4 The STL list<T> Class Template 11

aList
e - node I ength
66 — | 3
AN
™~ — — —
88 - 77 3 55 -
T 4

node

posi tion

(*position.node) .prev—>next = tmp;

Finally, the prev member of the node pointed to by position is updated to point to the new
node, and the 1ength member isincremented:

List
t np a
- node I ength
66 ——muo | 4
AN
~ | I -
88 77 55
—T — \

node

posi tion

(*position.node) .prev = tmp;
++length;

All we have done is change the values of four pointers, but this hasinserted the value 66 into the
sequence between the values 77 and 55. Although the nodes containing the sequence values
could be anywhere in memory, we can picture the resulting list as follows:

12 14.4 The STL list<T> Class Template

alList
node I ength
4
v
\ " " f" "
88 77 66 55
— — — — \

The push_front() and push_back() operations behave in a similar manner.
push_front() effectively uses insert() and begin() to insert its value at the beginning of
the sequence,

template<class T>
inline void list<T>::push_front()

{

insert(begin(), newvalue);

}

while push_back() uses insert() and end() to insert its value at the end of the sequence:
template<class T>

inline void list<T>::push_back()

{

insert(end(), newvalue);

}

The pop_back(), pop_front(), erase() and remove() Methods. Toremove
avaluein a sequence without any copying, 1ist<T> provides several different operations:

e aList.pop_back(); removesthelast valuefromaList

e aList.pop_Ffront(); removesthefirst valuefromaList

e aList.erase(anlterator); removesthevaue pointed to by anlterator fromaList
e aList.remove(avalue); removes all occurrences of avalue fromaList

The pop_back(), pop_front(), and remove() operations are implemented using the
erase() function, so we will focus on this operation.

14.4 The STL list<T> Class Template 13

To illustrate its behavior, suppose that aList is the list<int> we just examined and that
positionisalist<int>::iterator pointing a 66, the value we wish to erase:

aList
node I ength
4
\ " f" f f
88 77 66 55
—T — — — \
node
posi tion
The call

aList.erase(position);

begins by making the next member of the node containing 77 point to the node containing 55
and the prev member of the node containing 55 to point to the node containing 77:

14 14.4 The STL list<T> Class Template

alist
node I ength
4
~ / - \ -
88 77 66 55
— \ — — -
node

posi tion

(*position.node) .prev—>next
(*position.node) .next—>prev

(*position.node) .next;
(*position.node) .prev;

These two statements cut the target node out of the sequence, so that all that remains to do is
deallocate that node,* and decrement the list's length member:

4. We show the node being deallocated usingde l ete; however erase () actually usesacal toaput_node()
operation that stores the node in thelist’s pool of nodes (see footnote 10). This approach allows a subsequent
insert() operation to recyclethat node, thus avoiding the overhead of deall ocating the node now, and reallocat-
ing it later. The nodesinthe list_node_buffer are dealocated by ~1ist(), thelist destructor.

14.4 The STL list<T> Class Template 15

aList
node I ength
3
g [\ L
88 77 55
node

posi tion

delete position.node;
—1length;

Note that the erase() operation removes the value pointed to by position simply by chang-
ing two pointers. No copying of valuesis required, thanks to the flexibility of the linked nodes.

Asdescribed earlier, the pop_front() and pop_back() operations are implemented using
this erase () function: pop_front() erases the node at position begin(), and pop_back()
erases the node at position --end(). The remove () operation that deletes a given value from
the sequence can be implemented using erase() and asimplewhi e loop, asfollows:

template<class T>
void list<T>::remove(const T& value)
{
iterator first = begin(), // begin at first node
last = end(), // stop at head node
next = First; // save current node address

while (First I= last)

{
++next; // save address of next node
if (*first == value) // if value in current node
erase(first); // erase it
first = next; // reset First to next node
s

16 14.4 The STL list<T> Class Template

These are just a few of the 1ist<T> operations. A complete list can be found at the end of this
section.

AN APPLICATON: INTERNET ADDRESSES

The TCP (Transmission Control Protocol) and IP (Internet Protocol) communication protocols
specify the rules computers use in exchanging messages on the Internet. TCP/IP addresses are
used to uniquely identify computers in the Internet; for example, ww.ksc.nasa.gov is the
address of a site at the NASA Kennedy Space Center. Such an address is made up of four fields
that represent specific parts of the Internet,
host.subdomain.subdomain.rootdomain

which the computer will translate into a unique TCP/IP numeric address. This address is a 32-bit
value, but it is usualy represented in a dotted-decimal notation by separating the 32 bits into
four 8-bit fields, expressing each field as a decimal integer, and separating the fields with a
period; for example, 198.119.202.36 is the TCP/IP numeric address for the above site at the
NASA Kennedy Space Center. (A Part of the Picture detailing the TCP/IP Communications
Architecture written by William Stallings is available on the text’s CD and website.)

Problem. A gateway is adevice used to interconnect two different computer networks. Sup-
pose that a gateway connects a university to the Internet and that the university’ s network admin-
istrator needs to monitor connections through this gateway. Each time a connection is made (for
example, astudent using the World Wide Web), the TCP/IP address of the student’ s computer is
stored in a datafile. The administrator wants to check periodically who has used the gateway and
how many times they have used it.

Solution. The TCP/IP addresses will be read from the file and stored in alinked list of nodes
that will store an address and the number of times that address appeared in the datafile. Aseach
address is read, we check if it is aready in the list. If it is, we increment its count by 1; other-
wise, we simply insert it at the end of the list. After all the addresses in the file have been read,
the distinct addresses and their counts are displayed.

The following program uses this approach to solve the problem. The addresses are stored in a
list<AddressCounter> object named addrCntList, where AddressCounter is a smal
class containing two instance variables (address and count), input and output methods, and a
tal Iy() method to increment thecount instance variable. Also, operator==() isoverloaded
so that STL's find() agorithm can be used to search thelist.

Figure 14.2 Internet Addresses.

. ___]
/* internet.cpp reads TCP/IP addresses from a file and produces a

* list of distinct addresses and a count of how many times each

* appearedin the file. The addresses and counts are stored in a

14.4 The STL list<T> Class Template 17

*

linked list.

* Input (keyboard): name of file containing addresses
* Input (file): addresses
* Qutput: a list of distinct addresses and their counts

**/

#include <cassert> // assert

#include <string> // string

#include <iostream> // cin, cout, >>, <<
#include <iomanip> // setw(Q

#include <fstream> // ifstream, isopen()
#include <list> // list<T>

#include <algorithm> // find

using namespace std;

/) Begin class Addressltem ----—————————————————————
class AddressCounter

public:
void read(istream & in) { in >> address; count = 0; }

void print(ostream & out) const
{ out << setw(15) << left << address
<< "\t occurs " << count << " times\n"; }

void tally(Q) { count++; }

friend bool operator==(const AddressCounter& addrl,
const AddressCounteré& addr2);

private:

string address;
int count;

}:

inline bool operator==(const AddressCounteré& addrl,
const AddressCounter& addr2)

{ return addrl.address == addr2.address; }

// End class AddressCounter ------—-—-———————————-

typedef list<AddressCounter> TCP_IP_List;

int main()

string fileName; // File of TCP/IP addresses
TCP_IP_List addrCntList; // list of addresses
ifstream inStream; // open file of addresses

cout << "Enter name of Ffile containing TCP/IP addresses: ";

18

14.4 The STL list<T> Class Template

cin >> fileName;
inStream.open(fileName.data());
assert(inStream.is_open());

AddressCounter item;
for (33)

item.read(inStream);
if (inStream.eof()) break;

TCP_IP_List::iterator it =

find(addrCntList_begin(), addrCntList.

if (it !'= addrCntList.end())

¢it).tallyQ;
else
addrCntList.push_back(item);

}

cout << "\nAddresses and Counts:\n\n"';

//
//

//
//

//

//

//

one address & its count
input loop:

read an address
if eof, quit

is item in list?
end(Q), item);

if so:

++ Its count
otherwise
add it to the list
end loop

output the list

for (TCP_IP_List::iterator it = addrCntList.begin();
it != addrCntList.end(); it++)

Cit) .print(cout);

Listing of file ipAddresses.dat used in samplerun:
128.159.4.20
123.111.222.333
100.1.4.31
34.56.78.90
120.120.120.120
128.159.4.20
123.111.222.333
123.111.222.333
77.66.55.44
100.1.4.31
123.111.222.333
128.159.4.20

Samplerun:

Enter name of file containing TCP/IP addresses: i pAddresses. dat

Addresses and Counts:

128.159.4.20 occurs 2 times
123.111.222.333 occurs 3 times
100.1.4.31 occurs 1 times

14.4 The STL list<T> Class Template 19

34.56.78.90 occurs 0O times
120.120.120.120 occurs 0O times
77.66.55.44 occurs 0 times

1 1st<T> OPERATIONS

Thefollowing isalist of the operations defined on 1ist<T> objects; n isof typesize_type; I,
11, and 12 are of type 1ist<T>; val, val1, and val2 are of type T; ptrl and ptr2 are point-
erstovaluesof typeT; itl and it2 areiterators; and inpltl, and inplt2 areinput iterators.

Constructors:

list<T> I; This declaration invokes the default constructor to
construct I asan empty list

list<T> 1(n); This declaration initializes I to contain n default
values of type T

list<T> I(n, val); This declaration initializes 1 to contain n copies of
val

list<T> I(ptrl, ptr2) Thisdeclaration initializes s to contain the copies of
al the T valuesin therange[ptrl, ptr2)

list<T> 1(11); This declaration initializes I to contain acopy of 11

1 =11 Assignsacopy of 11to 1

11 == 12 Returns true if 1 and 12 contain the same values,
and False otherwise

11 < 12 Returns true if 11 islexicographicaly lessthan
12% 11 .size() islessthanl12.size() and dll
the elements of 11 match the first elements of 12;
orif vall and val2 arethefirst elementsof 11
and 12, respectively, that aredifferent, val 1 isless
than val 2% and it returns fal se otherwise

I_assign(n, val) Erases I and then insertsn copies of val (default T
valueif omitted)

I_assign(inpltl, inplt2) Erases I and then inserts copies of the T valuesin
therange[inpltl, inplt2)

1.back(Q) Returns areference to the last element of 1

1.begin() Returns an iterator positioned at the first element of
|

1.empty() Returns true if 1 contains no elements, false
otherwise

1.endQ) Returns an iterator positioned immediately after the

last element of 1

20

14.4 The STL list<T> Class Template

l_erase(it)
l._erase(itl, it2)
1.front()
I_insert(it, val)
I_insert(it, n, val)

I_insert(it, inpltl, inplt2)

I_insert(ptrl, ptr2)

I_max_size()

1.merge(l1)

I .push_back(val)
I .push_front(val)

1 .pop_back()
1._pop_fFfront()
1.rbeginQ)

1.remove(val)
1.rendQ)

I.resize(n, val)

I.reverse()
1.size()

1.sort(Q)

Removes from I the element at the position spec-
ifed by it; returntypeisvoid

Removes from I the elementsin therange[itl,
it2); returntypeisvoid

Returns areference to the first element of 1

Inserts acopy of val (default T valueif omitted)
into I at the position specified by it and returns an
iterator positioned at this copy

Inserts n copies of val into I at the position speci-
fied by i t; returntypeisvoid

Inserts inserts copies of the T valuesin the range
[inpltl, inplt2)into I at the position speci-
fied by i t; returntypeisvoid

Inserts copies of al the T valuesin the range
[ptrl, ptr2) attheposition specified by it;
return typeisvoid

Returns the maximum number (of type
size_type) of valuesthat I can contain

Merges the elements of 11 into I so that the result-
ing list is sorted; both I and 11 must have been
already sorted (using <); return typeisvoid

Adds acopy of val at theend of I; return typeis
void

Adds acopy of val at thefront of I; return typeis
void

Removes the last element of I; return typeisvoid
Removesthefirst element of I ; return typeisvoid

Returns areverse iterator positioned at the last ele-
ment of 1

Removes all occurrences of val from I, using ==
to compare elements; return typeisvoid

Returns areverse iterator positioned immediately
before the first element of 1

Setsthesizeof 1'ton;if n.1.size(), copies of
val (default T value if omitted) are appended to I;
if n,1.size(), the appropropriate number of ele-
mentsis removed from the end of 1

Reverses the order of the elements of I; return type
isvoid

Returns the number (of type size_type) of ele-
ments I contains

Sorts the elements of I using <; return typeisvoid

14.4 The STL list<T> Class Template

21

I_splice(it, 11)

I.splice(it, I1, itl)

I.splice(it, 11, itl, it2)

1.swap(ll)

1.unique()

Removesthe elementsof 11 and insertstheminto 1
at the position specified by 1 t; return typeisvoid
Removesthe element of 11 at the position specified
by itl andinsertsitinto I at the position specified
by It; returntypeisvoid

Removes the elements of 11 intherange[itl,
it2) andinsertstheminto I at the position speci-
fied by 1t; returntypeisvoid

Swaps the contents of 1 and 11; return typeis
void

Replaces all repeating sequences of an element of 1
with a single occurence of that element; return type
isvoid

