
PART OF THE PICTURE: The TCP/IP Communications Architecture 1

PART OF THE PICTURE: The TCP/IP 
Communications Architecture

BY WILLIAM STALLINGS

The key to the success of distributed applications is that all the terminals and computers in the community

“speak” the same language. This is the role of the underlying interconnection software. This software

must ensure that all the devices transmit messages in such a way that they can be understood by the other

computers and terminals in the community. With the introduction of the Systems Network Architecture

(SNA) by IBM in the 1970s, this concept became a reality. However, SNA worked only with IBM equip-

ment. Soon other vendors followed with their own proprietary communications architectures to tie

together their equipment. Such an approach may be good business for the vendor, but it is bad business

for the customer. Happily, that situation has changed radically with the adoption of standards for intercon-

nection software.

TCP/IP ARCHITECTURE AND OPERATION
When communication is desired among computers from different vendors, the software development

effort can be a nightmare. Different vendors use different data formats and data exchange protocols. Even

within one vendor’s product line, different model computers may communicate in unique ways.

As the use of computer communications and computer networking proliferates, a one-at-a-time spe-

cial-purpose approach to communications software development is too costly to be acceptable. The only

alternative is for computer vendors to adopt and implement a common set of conventions. For this to hap-

pen, standards are needed.

However, no single standard will suffice. Any distributed application, such as electronic mail or client/

server interaction, requires a complex set of communications functions for proper operation. Many of

these functions, such as reliability mechanisms, are common across many or even all applications. Thus,

the communications task is best viewed as consisting of a modular architecture, in which the various ele-

ments of the architecture perform the various required functions. Hence, before one can develop stan-

dards, there should be a structure, or protocol architecture, that defines the communications tasks.

Two protocol architectures have served as the basis for the development of interoperable communica-

tions standards: the TCP/IP protocol suite and the OSI (Open Systems Interconnection) reference model.

TCP/IP is the most widely used interoperable architecture, and has won the “protocol wars.” Although

some useful standards have been developed in the context of OSI, TCP/IP is now the universal interoper-

able protocol architecture. No product should be considered as part of a business information system that

does not support TCP/IP.



2 PART OF THE PICTURE: The TCP/IP Communications Architecture

TCP/IP LAYERS
The communication task using TCP/IP can be organized into five relatively independent layers: physical,

network access, internet, transport, and application.

The physical layer covers the physical interface between a data transmission device (e.g., worksta-

tion, computer) and a transmission medium or network. This layer is concerned with specifying the char-

acteristics of the transmission medium, the nature of the signals, the data rate, and related matters.

The network access layer is concerned with the exchange of data between an end system and the net-

work to which it is attached. The sending computer must provide the network with the address of the des-

tination computer, so that the network may route the data to the appropriate destination. The sending

computer may wish to invoke certain services, such as priority, that might be provided by the network.

The specific software used at this layer depends on the type of network to be used; different standards

have been developed for circuit-switching, packet-switching (e.g., X.25), local area networks (e.g.,

Ethernet), and others. Thus it makes sense to separate those functions having to do with network access

into a separate layer. By doing this, the remainder of the communications software, above the network

access layer, need not be concerned about the specifics of the network to be used. The same higher-layer

software should function properly regardless of the particular network to which the computer is attached.

The network access layer is concerned with access to and routing data across a network for two end

systems attached to the same network. In those cases where two devices are attached to different net-

works, procedures are needed to allow data to traverse multiple interconnected networks. This is the

function of the internet layer. The internet protocol (IP) is used at this layer to provide the routing func-

tion across multiple networks. This protocol is implemented not only in the end systems but also in rout-

ers. A router is a processor that connects two networks and whose primary function is to relay data from

one network to the other on its route from the source to the destination end system.

Regardless of the nature of the applications that are exchanging data, there is usually a requirement

that data be exchanged reliably. That is, we would like to be assured that all of the data arrive at the desti-

nation application and that the data arrive in the same order in which they were sent. As we shall see, the

mechanisms for providing reliability are essentially independent of the nature of the applications. Thus, it

makes sense to collect those mechanisms in a common layer shared by all applications; this is referred to

as the host-to-host layer, or transport layer. The transmission control protocol (TCP) is the most com-

monly-used protocol to provide this functionality.

Finally, the application layer contains the logic needed to support the various user applications. For

each different type of application, such as file transfer, a separate module is needed that is peculiar to that

application.

OPERATION OF TCP/IP
Figure 14-1 indicates how these protocols are configured for communications. To make clear that the total

communications facility may consist of multiple networks, the constituent networks are usually referred



PART OF THE PICTURE: The TCP/IP Communications Architecture 3

to as subnetworks. Some sort of network access protocol, such as the Ethernet logic, is used to connect a

computer to a subnetwork. This protocol enables the host to send data across the subnetwork to another

host or, in the case of a host on another subnetwork, to a router. IP is implemented in all of the end sys-

tems and the routers. It acts as a relay to move a block of data from one host, through one or more routers,

to another host. TCP is implemented only in the end systems; it keeps track of the blocks of data to assure

that all are delivered reliably to the appropriate application.

For successful communication, every entity in the overall system must have a unique address. Actu-

ally, two levels of addressing are needed. Each host on a subnetwork must have a unique global internet

address; this allows the data to be delivered to the proper host. This address is used by IP for routing and

delivery. Each application within a host must have an address that is unique within the host; this allows

the host-to-host protocol (TCP) to deliver data to the proper process. These latter addresses are known as

ports.

Let us trace a simple operation. Suppose that an application, associated with port 1 at

Figure 14-1 TCP/IP Concepts

Host A

App X
App Y

TCP

IP

Network Access
Protocol #1

Physical

Host B

App X
App Y

TCP

IP

Network Access
Protocol #2

Physical

Network 2Network 1

IP

NAP 1 NAP 2

Router J

Logical coonnection
(TCP connection)

Port or
service access point (SAP)

Global network
address

Subnetwork attachment
point address

Logical connection
(e.g., virtual circuit)



4 PART OF THE PICTURE: The TCP/IP Communications Architecture

host A, wishes to send a message to another application, associated with port 2 at host B. The application

at A hands the message down to TCP with instructions to send it to host B, port 12. TCP hands the mes-

sage down to IP with instructions to send it to host B. Note that IP need not be told the identity of the des-

tination port. All it needs to know is that the data is intended for host B. Next, IP hands the message down

to the network access layer (e.g., Ethernet logic) with instructions to send it to router X (the first hop on

the way to B).

To control this operation, control information as well as user data must be transmitted, as suggested in

Figure 14-2. Let us say that the sending process generates a block of data and passes this to TCP. TCP

may break this block into smaller pieces to make it more manageable. To each of these pieces, TCP

appends control information known as the TCP header, forming a TCP segment. The control information

is to be used by the peer TCP protocol entity at host B. Examples of fields that are part of this header

include:

• Destination port: When the TCP entity at B receives the segment, it must know to whom 
the data are to be delivered.

• Sequence number: TCP numbers the segments that it sends to a particular destination 
port sequentially, so that if they arrive out of order, the TCP entity at B can reorder them.

• Checksum: The sending TCP includes a code that is a function of the contents of the 
remainder of the segment. The receiving TCP performs the same calculation and compares 
the result with the incoming code. A discrepancy results if there has been some error in 
transmission.

Next, TCP hands each segment over to IP, with instructions to transmit it to B. These segments must

be transmitted across one or more subnetworks and relayed through one or more intermediate routers.

Figure 14-2 Protocol Data Units in the TCO/IP Architecture

Network
header

IP
header

TCP
header

User data
Application
byte stream

TCP
Segment

IP
datagram

Network-level
packet



PART OF THE PICTURE: The TCP/IP Communications Architecture 5

This operation, too, requires the use of control information. Thus IP appends a header of control informa-

tion to each segment to form an IP datagram. An example of an item stored in the IP header is the desti-

nation host address (in this example, B).

Finally, each IP datagram is presented to the network access layer for transmission across the first

subnetwork in its journey to the destination. The network access layer appends its own header, creating a

packet, or frame. The packet is transmitted across the subnetwork to router J. The packet header contains

the information that the subnetwork needs to transfer the data across the subnetwork. Examples of items

that may be contained in this header include:

• Destination subnetwork address: The subnetwork must know to which attached device 

the packet is to be delivered.

• Facilities requests: The network access protocol might request the use of certain subnet-

work facilities, such as priority.

At router J, the packet header is stripped off and the IP header examined. On the basis of the destina-

tion address information in the IP header, the IP module in the router directs the datagram out across sub-

network 2 to B. To do this, the datagram is again augmented with a network access header.

When the data are received at B, the reverse process occurs. At each layer, the corresponding header is

removed, and the remainder is passed on to the next higher layer, until the original user data are delivered

to the destination application.

A SIMPLE EXAMPLE
Figure 14-3 puts all of these concepts together, showing the interaction between modules to transfer one

block of data. For simplicity, the example shows two systems connected to the same network, so that no

router is involved. Let us say that the file transfer module in computer X is transferring a file one record at

a time to computer Y. At X, each record is handed over to TCP. We can picture this action as being in the

form of a command or procedure call. The arguments of this procedure call include the destination com-

puter address, the destination port, and the record. TCP appends the destination port and other control

information to the record to create a TCP segment. This is then handed down to IP by another procedure

call. In this case, the arguments for the command are the destination computer address and the TCP seg-

ment. The resulting IP datagram is handed down to the network access layer, which constructs a network-

level packet.

The network accepts the packet from X and delivers it to Y. The network access module



6 PART OF THE PICTURE: The TCP/IP Communications Architecture

in Y receives the packet, strips off the header, and transfers the enclosed transport PDU to Y’s IP module,

which strips off the IP header and passes the resulting TCP segment to TCP. TCP examines the segment

header and, on the basis of the destination port field in the header, delivers the enclosed record to the

appropriate application, in this case the file transfer module in Y.

TCP AND UDP
For most applications running as part of the TCP/IP protocol architecture, the transport layer protocol is

TCP. TCP provides a reliable connection for the transfer of data between applications.

Figure 14-4a shows the header format for TCP, which is a minimum of 20 octets, or 160 bits. The

Source Port and Destination Port fields identify the applications at the source and destination systems

that are using this connection. The Sequence Number, Acknowledgment Number, and Window fields

provide flow control and error control. In essence, each segment is sequentially numbered and must be

Figure 14-3 Operation of TCP/IP

Application

TCP

IP

Network
Access

Source X

Application

TCP

IP

Network
Access

Destination Y

Record Record

TCP segment

IP datagram

Packet



PART OF THE PICTURE: The TCP/IP Communications Architecture 7

acknowledged by the receiver so that the sender knows that the segment was successfully received. The

Windows field is passed from one side to the other to indicate how many data the other side may send

before receiving additional permission. Finally, the checksum is a 16-bit frame check sequence used to

detect errors in the TCP segment.

In addition to TCP, there is one other transport-level protocol that is in common use as part of the

TCP/IP protocol suite: the user datagram protocol (UDP). UDP provides a connectionless service for

application-level procedures. UDP does not guarantee delivery, preservation of sequence, or protection

against duplication. UDP enables procedures to send messages to other procedures with a minimum of

protocol mechanism. Some transaction-oriented applications make use of UDP; one example is SNMP

(Simple Network Management Protocol), the standard network management protocol for TCP/IP net-

works. Because it is connectionless, UDP has very little to do. Essentially, it adds a port addressing capa-

bility to IP. This is best seen by examining the UDP header, shown in Figure 14-4b.

Figure 14-4 TCP and UDP Headers

Bit 0 4 10 16

Source Port

Sequence Number

Acknowledgement Number

Unused
Header
length Flags Window

Destination Port

Checksum Urgent Pointer

Options + Padding

(a) TCP Header

(b) UDP Header

31

Source Port Destination Port

Segment Length Checksum

20
 o

ct
et

s
8 

oc
te

ts

Bit 0 4 10 16 31



8 PART OF THE PICTURE: The TCP/IP Communications Architecture

IP AND IPV6
For decades, the keystone of the TCP/IP protocol architecture has been the Internet Protocol (IP). Figure

14-5a shows the IP header format, which is a minimum of 20 octets, or 160 bits. The header includes 32-

bit source and destination addresses. The Header Checksum field is used to detect errors in the header to

avoid misdelivery. The Protocol field indicates whether TCP, UDP, or some other higher-layer protocol is

Figure 14-5 IP Heasers

(a) IPv4

20
 o

ct
et

s

Version IHL Type of service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options + Padding

(b) IPv6

40
 o

ct
et

s

Version Priority Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Bit 0 4 10 1916 31

Bit 0 4 10 16 31



PART OF THE PICTURE: The TCP/IP Communications Architecture 9

using IP. The Flags and Fragment Offset fields are used in the fragmentation and reassembly process.

In 1995, the Internet Engineering Task Force (IETF), which develops protocol standards for the Inter-

net, issued a specification for a next-generation IP, known then as IPng. This specification was turned into

a standard in 1996 known as IPv6. IPv6 provides a number of functional enhancements over the existing

IP, designed to accommodate the higher speeds of today’s networks and the mix of data streams, includ-

ing graphic and video, that are becoming more prevalent. But the driving force behind the development

of the new protocol was the need for more addresses. The current IP uses a 32-bit address to specify a

source or destination. With the explosive growth of the Internet and of private networks attached to the

Internet, this address length became insufficient to accommodate all of the systems needing addresses. As

Figure 14-5b shows, IPv6 includes 128-bit source and destination address fields.

Ultimately, all of the installations using TCP/IP are expected to migrate from the current IP to IPv6,

but this process will take many years if not decades.

TCP/IP APPLICATIONS
A number of applications have been standardized to operate on top of TCP. We mention three of the most

common here.

The simple mail transfer protocol (SMTP) provides a basic electronic mail facility. It provides a

mechanism for transferring messages among separate hosts. Features of SMTP include mailing lists,

return receipts, and forwarding. The SMTP protocol does not specify the way in which messages are to

be created; some local editing or native electronic mail facility is required. Once a message is created,

SMTP accepts the message, and makes use of TCP to send it to an SMTP module on another host. The

target SMTP module will make use of a local electronic mail package to store the incoming message in a

user’s mailbox.

The file transfer protocol (FTP) is used to send files from one system to another under user com-

mand. Both text and binary files are accommodated, and the protocol provides features for controlling

user access. When a user wishes to engage in file transfer, FTP sets up a TCP connection to the target sys-

tem for the exchange of control messages. These allow user ID and password to be transmitted, and allow

the user to specify the file and file actions desired. Once a file transfer is approved, a second TCP connec-

tion is set up for the data transfer. The file is transferred over the data connection, without the overhead of

any headers or control information at the application level. When the transfer is complete, the control

connection is used to signal completion and to accept new file transfer commands.

TELNET provides a remote logon capability, which enables a user at a terminal or personal computer

to logon to a remote computer and function as if directly connected to that computer. The protocol was

designed to work with simple scroll-mode terminals. TELNET is actually implemented in two modules:

User TELNET interacts with the terminal I/O module to communicate with a local terminal. It converts

the characteristics of real terminals to the network standard and vice versa. Server TELNET interacts

with an application, acting as a surrogate terminal handler so that remote terminals appear as local to the



10 PART OF THE PICTURE: The TCP/IP Communications Architecture

application. Terminal traffic between User and Server TELNET is carried on a TCP connection.

TO PROBE FURTHER
The topics in this section are covered in detail in Data and Computer Communications, Fifth Edition, by

William Stallings (Prentice Hall, 1997). Links to web sites with further information can be found at http:/

/www.shore.net/,ws/DCC5e.


