
13.4 Case Study: vector<T>-Based Matrices 1

13.4 Case Study: vector<T>-Based Matrices
A two-dimensional numeric array having m rows and n columns is called an m n matrix.
There are many important applications of matrices because there are many problems that can be
solved most easily using matrices and matrix operations. Thus a Matrix class would be very
useful and the task at hand is to build such a class.

To begin, we must know what matrix operations to include. Here we will confine our atten-
tion to addition, subtraction, multiplication, and transpose. The sum of two matrices that have
the same number of rows and the same number of columns is defined as follows: If Aij and Bij
are the entries in the ith row and jth column of m × n matrices A and B, respectively, then Aij + Bij
is the entry in the ith row and jth column of the sum, which will also be an m × n matrix. For
example,

The difference of two such matrices is obtained simply by replacing + by –; for example,

The product of two matrices is more difficult to calculate. For A * B to be defined, the num-
ber of columns in A must match the number the number of rows in B. So suppose that A is an
m × n matrix and B is an n × p matrix. The product C of A and B is an m × p matrix with the entry
Cij, which appears in the ith row and the jth column, given by

To illustrate, suppose that A is the 2 × 3 matrix

and that B is the 3 × 4 matrix

Because the number of columns (3) in A equals the number of rows in B, the product matrix is

1 0 2

1– 3 5

4 2 1

7 0 3
+ 5 2 3

6 3 8
=

1 0 2

1– 3 5

4 2 1

7 0 3
– 3– 2– 1

8– 3 2
=

C ij The sum of the products of the entries in row i of A=

with the entries in column j of B

Ai1 B1 j× Ai2 B2 j× . . . Ain Bnj× + + +=

1 0 2

3 0 4

4 2 5 3

6 4 1 8

9 0 0 2

2 13.4 Case Study: vector<T>-Based Matrices

defined. The entry in the first row and first column is obtained by multiplying the first row of
mat1 with the first column of mat2, element by element, and adding these products:

Similarly, the entry in the first row and second column is

The complete product matrix is the 2 × 4 matrix given by

BUILDING A Matrix CLASS: THE EXTERNAL APPROACH
If we imitate the Table class in the preceding section, then building a Matrix class is quite
easy, because a matrix can be thought of as a vector of vectors of numbers. We can simply use a
typedef statement to declare the name Matrix as an alias for vector< vector<double> >.
To make this declaration reusable, we would place it in a Matrix library header Matrix.h:

/* Matrix.h provides the type Matrix and its
 * operation prototypes.
 ***/

#include <vector>
using namespace std;
#include "Table.h" // Table prototypes

typedef vector<double> MatrixRow;
typedef vector< MatrixRow > Matrix;

// ... Matrix operation prototypes go here

A program that includes this header file can now define an empty Matrix object as follows:

Matrix aMatrix;

A non-empty Matrix can be defined using the same approach as in Section 13.3:

1 0 2

3 0 4

4 2 5 3

6 4 1 8

9 0 0 2

1∗4 0∗6 2∗9+ + 22=

1 0 2

3 0 4

4 2 5 3

6 4 1 8

9 0 0 2

1∗2 0∗4 2∗0+ + 2=

22 2 5 7

48 6 15 17

13.4 Case Study: vector<T>-Based Matrices 3

const int ROWS = 3,
 COLS = 4;
Matrix theMatrix(ROWS, MatrixRow(COLS, 0.0));

This definition builds theMatrix as a 3 × 4 matrix, and sets each of its elements to zero.

Matrix OPERATIONS
Because the identifier Matrix is a synonym for vector< vector<double> >, any operation
defined for vector< vector<double> > can be applied to a Matrix object. For example, the
double-subscript operation can be used to access a particular element of a Matrix; that is, the-
Matrix[r][c] is the entry of theMatrix in row r and column c. Similarly, the size() func-
tion can be used to determine the number of rows in a Matrix. The statements

for (int r = 0; r < theMatrix.size(); r++)
 for (int c = 0; c < theMatrix[r].size(); c++)
 theMatrix[r][c] = r + c + 1;

will modify theMatrix as follows:

In addition, because Matrix is a synonym for vector< vector<double> > and Table is
also a synonym for vector< vector<double> >, the operations defined for Table (e.g.,
fill() from Figure 13-4 of the text) can also be applied to Matrix objects. Including the
directive #include "Table.h" in Matrix.h adds the prototypes of these operations.

Operations that are specific to matrices such as addition, subtraction, and multiplication must
be defined as functions. For example, the following function definitiom shows the implementa-
tion of the matrix multiplication operation by overloading operator*. Because this is a reason-

0. 0[0]

[0] [1] [2] [3]

0. 0 0. 0 0. 0

0. 0[1] 0. 0 0. 0 0. 0

0. 0[2] 0. 0 0. 0 0. 0

t heMa t r i x :

1. 0[0]

[0] [1] [2] [3]

2. 0 3. 0 4. 0

2. 0[1] 3. 0 4. 0 5. 0

3. 0[2] 4. 0 5. 0 6. 0

t heMa t r i x :

4 13.4 Case Study: vector<T>-Based Matrices

ably complicated operation, we define it in a separately compiled implementaton file Matrix.cpp
and place its prototype in Matrix.h.

Case Study 13.4-1 Matrix Multiplication.

/* Matrix.cpp defines the Matrix operations.
 * ...
 **/

#include "Matrix.h" // type Matrix
#include <cassert> // assert()
using namespace std;

Matrix operator*(const Matrix& mat1, const Matrix& mat2)
{
 const int ROWS1 = mat1.size(),
 ROWS2 = mat2.size();
 assert(ROWS1 > 0 && ROWS2 > 0); // verify nonzero

 const int COLS1 = mat1[0].size(),
 COLS2 = mat2[0].size();
 assert(COLS1 == ROWS2); // check precondition

 Matrix mat3(ROWS1, // define result Matrix
 MatrixRow(COLS2, 0.0));

 for (int i = 0; i < ROWS1; i++) // for each row in mat1:
 for (int j = 0; j < COLS2; j++) // for each col in mat2:
 {
 double sum = 0;
 for (int k = 0; k < COLS1; k++) // for each col in mat1:
 sum += mat1[i][k] * mat2[k][j];// sum the products
 mat3[i][j] = sum; // put sum in result Matrix
 }

 return mat3; // return the result Matrix
}

Once Matrix operations have been defined, a program can make use of these operations in
the same manner as those of any other class, as in the following program:

13.4 Case Study: vector<T>-Based Matrices 5

Case Study 13.4-2 Program To Demonstrate Matrix Multiplication.

/* matMult.cpp tests the matrix multiplication method.
 *
 * Input (keyboard): names of files containing matrices
 * Input (files): two matrices
 * Precondition: the first line of each file == rows & columns
 * Output (screen): the matrices together with their product
 **/

#include <iostream> // cin, cout, <<, >>
#include <string> // string type
using namespace std;
#include "Matrix.h" // Matrix, operator *

int main()
{
 cout << "\nThis program demonstrates matrix multiplication,\n"
 "by multiplying two matrices stored in separate files.\n"
 "\nA file must list the # of rows and columns of its "
 "matrix.\n";
 // get file names
 cout << "\nPlease enter the name of the first file: ";
 string file1;
 cin >> file1;

 cout << "and the name of the second file: ";
 string file2;
 cin >> file2;

 Matrix matrix1,
 matrix2;

 fill(file1, matrix1); // load matrix1 from file1
 fill(file2, matrix2); // load matrix2 from file2
 // Display the matrices
 cout << "\n- Matrix1 --------------------------------------\n";
 print(cout, matrix1);
 cout << "\n- Matrix2 --------------------------------------\n";
 print(cout, matrix2);

 Matrix matrix3 = matrix1 * matrix2; // perform multiplication
 // display matrix3
 cout << "\n- Matrix3 --------------------------------------\n";
 print(cout, matrix3);
}

Listing of Input File mat2x3.dat:

2 3
1 0 2
3 0 4

6 13.4 Case Study: vector<T>-Based Matrices

Listing of Input File mat3x4.dat:

3 4
4 2 5 3
6 4 1 8
9 0 0 2

Sample run:

This program demonstrates matrix multiplication,
by multiplying two matrices stored in separate files.

A file must list the # of rows and columns of its matrix.

Please enter the name of the first file: mat2x3.dat
and the name of the second file: mat3x4.dat

- Matrix1 --------------------------------------
1 0 2
3 0 4

- Matrix2 --------------------------------------
4 2 5 3
6 4 1 8
9 0 0 2

- Matrix3 --------------------------------------
22 2 5 7
48 6 15 17

It is important to understand that the statement

Matrix matrix1,
 matrix2;

builds matrix1 and matrix2 as empty vectors of vectors of numbers. The statements

fill(file1, matrix1);
fill(file2, matrix2);

use function fill() from the Table library defined in Section 13.3 of the text, and the state-
ments

print(cout, matrix1);
print(cout, matrix2);

apply the function print() from the same Table library. The declaration of the result matrix

Matrix matrix3 = matrix1 * matrix2;

13.4 Case Study: vector<T>-Based Matrices 7

constructs matrix3 as a Matrix, and initializes it with the Matrix returned by operator*,
rather than using the default assignment mechanism. The definition of print() from the Table
library is then used a final time to display matrix3.

Implementing the addition and subtraction operations is much easier than for multiplication
and do we leave them as exercises.

APPLICATION: SOLVING LINEAR SYSTEMS
A linear system is a set of linear equations, each of which involves several unknowns; for exam-
ple,

is a linear system of three equations involving the three unknowns x1, x2, and x3. A solution of
such a system is a collection of values for these unknowns that satisfies all of the equations
simultaneously.

One method for solving a linear system is called Gaussian elimination. In this method, we
first eliminate x1 from the second equation by adding 1/5 times the first equation to the second
equation and, from the third equation, by adding times the first equation to the third equation.
This yields the linear system

which is equivalent to the first system because it has the same solution as the original system.
We next eliminate x2 from the third equation by adding 2.4 / 4.8 = times the second equation to
the third, giving the new equivalent linear system:

Once the original system has been reduced to such a triangular form, it is easy to find the solu-
tion. It is clear from the last equation that the value of x3 is

Substituting this value for x3 in the second equation and solving for x2 gives

5x1 x2– 2x3– 11=

 x1– 5x2 2x3–+ 0=

2x1– 2x2– 7x3+ 0=

5x1 x2– 2x3– 11=

 4.8 x2 2.4x3– 2.2=

 2.4– x2 6.2 x3+ 4.4=

 5 x1 x2– 2x3– 11=

 4.8 x2 2.4 x3– 2.2=

 5 x3 5.5=

x3
5.5
5

------- 1.100= =

x2
2.2 2.4 1.1()+

4.8
---------------------------------- 1.008= =

8 13.4 Case Study: vector<T>-Based Matrices

and substituting these values for x2 and x3 in the first equation gives

The original linear system can also be written as a single matrix equation
Ax = b

where A is the 3 × 3 coefficient matrix, b is the 3 × 1 constant vector, and x is the 3 × 1 vector
of unknowns:

The operations used to reduce the original linear system to triangular form use only the coeffi-
cient matrix A and the constant vector b. Thus, if we combine these into a single matrix by
adjoining b to A as a last column,

we can carry out the required operations on this new matrix, called the augmented matrix,
without writing down the unknowns at each step. Thus we add – Aug[1][0] / Aug[0][0]5 = 1/5
times the first row of Aug to the second row, and – Aug[2][0] / Aug[0][0]5 = 2/5 times the first
row of Aug to the third row, to obtain the new matrix:

Then adding – Aug[2][1] / Aug[1][1]5 = 1/2 times the second row to the third row gives the fol-
lowing triangular matrix, which corresponds to the final triangular system of equations:

x1
11 1.008 2 1.100()+ +

5
--= 2.842=

A
5 1– 2–

1– 5 2–

2– 2– 7

x,
x1

x2

x3

b,
11

0

0

= = =

Aug
5 1– 2– 11

1– 5 2– 0

2– 2– 7 0

=

Aug
5 1– 2– 11

0 4.8 2.4– 2.2

0 2.4– 6.2 4.4

=

Aug
5 1– 2– 11

0 4.8 2.4– 2.2

0 0 5 5.5

=

13.4 Case Study: vector<T>-Based Matrices 9

From this example, we see that the basic row operation performed at the ith step of the reduc-
tion process is:

Clearly, for this to be possible, the element Aug[i][j], called a pivot element, must be nonzero. If
it is not, we must interchange the ith row with a later row to produce a nonzero pivot.

The following program solves linear systems using Gaussian elimination. To minimize the
effect of roundoff error in the computations, it selects as a pivot at each stage in the reduction the
candidate that is largest in absolute value.

Case Study 13.4-3 Linear Equation Solver that Uses Gaussian Elimination

/* gaussElim.cpp solves systems of linear equation using
 * Gaussian Elimination.
 *
 * Input: a series of linear equation coefficients
 * Output: the solution of the linear equation or a "singular
 * system" message
 * Joel Adams of Calvin College.
 ***/

#include <iostream> // cout, cin, ...
#include <cstdlib> // exit()
using namespace std;
#include "Matrix.h" // Matrix class

void readEquations(Matrix & augMat);
int reduce(Matrix & augMat);
Matrix solve(Matrix & augMat);
Matrix GaussElim();

int main()
{
 cout << "This program solves a linear system "
 "using Gaussian Elimination. \n";

 Matrix solutionVector = GaussElim();

 cout << "\nThe solution vector (x1, x2, ...) for this system is:\n\n"
 << solutionVector << endl;
}

for k = i + 1, i + 2, . . . , n

Replace rowk by rowk
Aug k[] i[]
Aug i[] i[]
------------------------- row i×–

10 13.4 Case Study: vector<T>-Based Matrices

/* GaussElim() performs the Gaussian Elimination algorithm
 *
 * Input: the coefficients of a linear system and its constant vector
 * Return: the solution to the linear system
 * Joel Adams of Calvin College.

*/

Matrix GaussElim()
{
 Matrix augmentedMatrix;

 readEquations(augmentedMatrix);

 bool isSingular = reduce(augmentedMatrix);

 if (isSingular)
 {
 cerr << "\n*** GaussElim: Coefficient Matrix is (nearly) singu-
lar!\n";
 exit (0);
 }

 Matrix solutionVector = solve(augmentedMatrix);

 return solutionVector;
}

void readEquations(Matrix & augMat)
{
 int numEquations;

 for (;;)
 {
 cout << "\nPlease enter the number of equations in the system: ";
 cin >> numEquations;
 if (numEquations > 1) break;
 cerr << "\n*** At least two equations are needed ...\n";
 }

 augMat = Matrix(numEquations, // numEquations rows
 numEquations+1); // numEquations+1 columns

 cout << "\nPlease enter the coefficient matrix row-by-row...\n";
 for (int r = 0; r < numEquations; r++)
 for (int c = 0; c < numEquations; c++)
 cin >> augMat[r][c];

 cout << "\nPlease enter the constant vector...\n";

13.4 Case Study: vector<T>-Based Matrices 11

 for (int r = 0; r < numEquations; r++)
 cin >> augMat[r][numEquations];
}

inline double abs(double val)
{
 return (val < 0) ? -(val) : val;
}

inline void swap(double & a, double & b)
{
 double t = a; a = b; b = t;
}

int reduce(Matrix & augMat)
{
 const double EPSILON = 1.0E-6;
 bool isSingular = false;
 int i = 0,
 j,
 k,
 numRows = augMat.Rows(),
 pivotRow;
 double quotient,
 absolutePivot;

 while ((!isSingular) && (i < numRows))
 {
 absolutePivot = abs(augMat[i][i]);
 pivotRow = i;
 for (k = i+1; k < numRows; k++)
 if (abs(augMat[k][i]) > absolutePivot)
 {
 absolutePivot = abs(augMat[k][i]);
 pivotRow = k;
 }
 isSingular = absolutePivot < EPSILON;
 if (!isSingular)
 {
 if (i != pivotRow)
 for (j = 0; j <= numRows; j++)
 swap(augMat[i][j], augMat[pivotRow][j]);

 for (j = i+1; j < numRows; j++)
 {
 quotient = -augMat[j][i] / augMat[i][i];
 for (k = i; k <= numRows; k++)
 augMat[j][k] = augMat[j][k] + quotient * augMat[i][k];
 }

12 13.4 Case Study: vector<T>-Based Matrices

 }
 i++;
 }
 return isSingular;
}

Matrix solve(Matrix & augMat)
{
 Matrix solutionVector(1, augMat.Rows());
 int n = augMat.Rows()-1;

 solutionVector[0][n] = augMat[n][n+1] / augMat[n][n];

 for (int i = n-1; i >= 0; i--)
 {
 solutionVector[0][i] = augMat[i][n+1];

 for (int j = i+1; j <= n; j++)
 solutionVector[0][i] -= augMat[i][j] * solutionVector[0][j];

 solutionVector[0][i] /= augMat[i][i];
 }

 return solutionVector;
}

EXERCISES 13.4
1. Add the addition operation to the Matrix class.

2. Add the subtraction operation to the Matrix class.

3. Add a method to class Matrix to find the transpose of a matrix which is defined in Exercise 6 of

Section 13.5 of the text.

4. Proceed as in Programming Problem 27 at the end of Chapter 13 of the text, but use the Matrix class

of this section to solve the product-cost problem.

5. Proceed as in Programming Problem 28 at the end of Chapter 13 of the text, but use the Matrix class

of this section to solve the coordinate-transformation problem.

6. Proceed as in Programming Problem 29 at the end of Chapter 13 of the text, but use the Matrix class

of this section to solve the Markov chain problem.

7. Proceed as in Programming Problem 30 at the end of Chapter 13 of the text, but use the Matrix class

of this section to solve the directed-graph problem.

8. The inverse of an n × n matrix A is a matrix A–1 for which both the products A * A–1 and A–1 * A are

equal to the identity matrix having 1s on the diagonal from the upper left to the lower right and 0s

13.4 Case Study: vector<T>-Based Matrices 13

elsewhere. The inverse of matrix A can be calculated by solving the linear systems Ax = b for each of

the following constant vectors b:

These solutions give the first, second, third, . . . , nth column of A–1. Write a program that uses Gauss-

ian elimination to solve these linear systems and thus calculates the approximate inverse of a matrix.

1

0

0

˙

˙

˙

0

0

1

0

˙

˙

˙

0

0

0

1

˙

˙

˙

0

 …

0

0

0

˙

˙

˙

1

