
PART OF THE PICTURE: Artificial Intelligence 1

PART OF THE PICTURE: Artificial Intelligence

BY KEITH VANDER LINDEN, CALVIN COLLEGE

Just over an hour into the sixth game of their chess match, Garry Kasparov, the reigning world champion,

conceded defeat to Deep Blue, a chess-playing computer developed by IBM corporation. Kasparov lost

the match, held in May of 1997, 3.5 games to 2.5 games. It marked the first time a computer program had

defeated a world chess champion in anything approaching tournament conditions.

Although this result came as a surprise to many, it has been clear for some time that a computer would

eventually beat a world champion player. Since their introduction to tournament play in the late 1960’s,

chess programs have made steady progress, defeating a chess master in 1983, a grandmaster in 1988, and

now the world champion. This is by no means the end of the story, however. There are reservations con-

cerning the validity of this most recent match: it was not really a tournament setting with multiple play-

ers, Kasparov was not allowed to study Deep Blue’s previous matches, and he was under considerable

pressure to hold off a perceived “attack on humanity” by computer programs. Nevertheless, another mile-

stone has been passed.

The construction of game-playing programs such as Deep Blue is part of a subfield of Computer Sci-

ence known as Artificial Intelligence or AI. Roughly speaking, AI is an attempt to program computers to

perform intelligent tasks. Giving a precise definition of AI is difficult, however, and most AI textbooks

spend a laborious opening chapter attempting to characterize the field. This difficulty comes about for

two reasons: (1) because intelligent behavior is complex and hard to define; and (2) because the styles of

programming used to implement this behavior are diverse.

INTELLIGENCE
We all have a general notion of what intelligence is. We presume to know who has it and who doesn’t.

Garry Kasparov, for example, is intelligent by any measure. He is the world champion of chess, a game

long seen as a pinnacle of human intellectual achievement. But what about Deep Blue? Is it intelligent? It

beat Garry Kasparov in a chess match; this must mean something.

Clearly, Deep Blue has performed an intelligent feat. It has done so, however, in a very narrow

domain. This is one thing that distinguishes its accomplishment from general human intelligence. Intelli-

gent behavior, the “I” in AI, is diverse. Humans display profoundly complex behavior in many areas, all

of which have been topics of study in AI, including:

• Reasoning and problem solving—Humans are able to reason about their world and to plan their own
actions accordingly. This encompasses a variety of activities, including game playing, mathematical
theorem proving, and the planning of actions. Examples of systems which perform these tasks include
Deep Blue, the game-playing system just discussed; EQP, a system which, in 1996, proved a theorem

2 PART OF THE PICTURE: Artificial Intelligence

that no human has successfully proven; and SPIKE, a system which plans observation schedules for
the Hubble space telescope.

• Memory—Humans are able to remember things about their world. In AI, the study of this area is
called knowledge representation. It serves as the foundation of all reasoning and problem solving.
Deep Blue, for example, represents considerable knowledge about chess but, it must be said, little or
nothing about anything else.

• Motion and manipulation—Humans are able to perform actions in their world. The area of AI which
deals with this is called robotics. This area, much popularized in science fiction, includes the develop-
ment of robotic arms for assembly lines, or of fully mobile agents such as Robosoft’s Auto VacC, an
autonomous vacuum cleaner.

• Perception—Humans are able to see and to hear. The areas of AI concerned with these behaviors are
called computer vision and speech recognition. They have been successful in fielding systems,
which convert written characters into ASCII characters, called optical character recognition systems
and systems which convert spoken words into ASCII words, called speech-to-text dictation systems.

• Language processing—Humans are able to process natural, human languages. In AI, the behaviors
studied include the ability to understand language (natural language understanding), the ability to
produce language (natural language generation), and the ability to translate from one language to
another (machine translation). Examples of this include M_t_o, a system which generates weather
reports in English and French, and Systran, a machine translation system used by the European Com-
mission.

• Learning—Humans are also able to learn from past experiences. In AI, the study of this phenomenon
is called machine learning. One practical application of this involves data mining. Data mining tools
attempt to find consistent patterns in large amounts of data. One such tool, ISL’s Clementine, has been
trained to predict the audience-share for prospective new television shows on the BBC.

Deep Blue can play chess well, but doesn’t exhibit any of the other behaviors just given. It can’t even

move its own chess pieces. At first glance, however, many of these other areas don’t appear to be all that

difficult, particularly when compared with chess. My four-year old son, for example, can’t play chess

very well yet, but he does exhibit all the other behaviors with relative ease. He remembers things, he per-

ceives and manipulates things, he processes language, and he learns. These have all come naturally to

him. Surely with a little extra work, Deep Blue could do them as well. This is a critical misconception.

Just because a task is easy for people doesn’t necessarily means that it is simple. In fact, some of the

things humans find extremely easy to perform have turned out to be among the hardest to program. For

example, in the area of natural language processing, we have not succeeded in producing a system capa-

ble of engaging in meaningful conversation except in narrowly defined contexts. Conversely, some of the

greatest successes in AI have been in areas seen as requiring great skill such as chess playing, calculus,

and medical diagnosis.

This paradox of sorts is part of the reason that early researchers in AI grossly underestimated the diffi-

culties in AI programming. Indeed, the field of AI has been greatly damaged by overly-ambitious expec-

tations. In the mid-to-late 50’s, for example, many people felt that machine translation programs were just

around the corner. In retrospect, this was an extraordinary claim given that at the time we barely knew

how to translate FORTRAN into assembly language.

PART OF THE PICTURE: Artificial Intelligence 3

PROGRAMMING TECHNIQUES
Another point that distinguishes Deep Blue’s accomplishment from general human intelligence is the

mechanism by which it operates, the “A” in its AI. As there is a wide range of intelligent behavior, there is

also a wide range of programming techniques used to implement them “artificially.” These techniques

include:

• Heuristic search—AI programs are frequently designed to consider a number of choices. This is
called search because the program is said to search through a space of possible choices and their con-
sequences. For example, before making a choice, Deep Blue considers many moves and what their
consequences might be many steps into the future. It uses a 256-processor architecture to do this, con-
sidering on the order of 200 million board positions per second. Search alone is seldom sufficient,
however. The nature of chess, for example, dictates that Deep Blue be selective in what moves it con-
siders, and how far down the road it considers them. There are simply too many alternatives to con-
sider them all. It, therefore, tends to ignore the less promising ones, and to focus on a few options.
These options are chosen based on heuristics, or rules of thumb, such as “first, consider moves that
gain control of the center of the board.”

• Logic programming—This approach involves representing knowledge in a well-defined format and
performing logical inferences on it. For example, EQP, the theorem-proving program mentioned ear-
lier, uses such an approach to prove theorems. It takes a set of given knowledge, and attempts to derive
the theorem logically from this knowledge. The programming language Prolog has been specifically
designed to support logic programming.

• Expert systems—Expert systems encode knowledge elicited from an expert in some domain. Many of
these systems have become commercial successes, including XCON (a system which configures com-
puter components for DEC equipment), and SBDS (a system which diagnoses electrical problems in
Ford automobile engines).

• Neural networks—The techniques given so far are programmed on computers which are built with
digital circuitry. The human brain, on the other hand, is very different. It is constructed of very simple
brain cells, called neurons, which are highly interconnected with one another. Computer models of
this structure are called neural networks or connectionist systems. They display radically different
characteristics from traditional programming techniques.

These techniques are not mutually exclusive, and may be used individually or in combinations to

implement the intelligent behaviors discussed.

EXAMPLE: THE NOT-ONE GAME
Early researchers in AI frequently used games such as chess as a vehicle for their research. Games tend to

be limited in scope and to have well-defined rules. Chess, for example, has a 12 × 12 board with a finite

set of pieces, where each piece has a well-defined set of possible moves. This allowed the researchers to

avoid the problems involved in modeling the other areas of intelligent behavior. We, too, will take advan-

tage of this and implement a program that plays not-one, a simple dice game for two players.

In not-one, each player takes a turn in which they roll two dice and remember the sum of the values as

their first roll. They may roll again as many times as they would like, with the object of getting the highest

roll possible. The only stipulation is that they are forced to quit with a score of 0 for the turn if they roll

4 PART OF THE PICTURE: Artificial Intelligence

the same sum as they did for their first roll. The player with the highest score after 12 turns wins.

We’ll start by implementing a turn-taking driver program. This driver runs a 12-turn game, printing

out the scores at the end of each turn:

POP 11-1 A Driver for Not-One.

int main()
{
 cout << "\nReady to play some Not-One!\n" << endl;

 Player1 player1("Fast");
 Player2 player2("Random");

 int player1Score = 0, // initialize
 player2Score = 0, // counters
 player1LastRoll = 0,
 player2LastRoll = 0;

 for (int i = 1; i <= 12; i++) // play 12 rounds
 {
 // the 1st player’s turn
 cout << "---\n"
 << player1.getName() << ", turn " << i;
 player1LastRoll = player1.takeTurn(player2LastRoll);
 player1Score += player1LastRoll;
 // the 2nd player's turn
 cout << "---\n"
 << player2.getName() << ", turn " << i;
 player2LastRoll = player2.takeTurn(player1LastRoll);
 player2Score += player2LastRoll;
 // summarize round
 cout << "**\n"
 << " Turn " << i << " - "
 << player1.getName() << ": " << player1Score << "; "
 << player2.getName() << ": " << player2Score
 << "\n**\n"
 << endl;
 }
}

Notice that this driver makes use of two user-defined classes, Player1 and Player2, which imple-

ment the methods takeTurn() and getName(). We have created two classes rather than one so that

the player that goes first may have a different strategy from the player that goes second. The

takeTurn() method for each player is as follows:

PART OF THE PICTURE: Artificial Intelligence 5

POP 11-2 A Turn-Taking Member Function for Not-One.

int Player::takeTurn(int opponentsLastRoll)
{
 RandomInt die1(1, 6); // Declare the random dice.
 RandomInt die2(1, 6);

 myCurrentRoll = 0;
 myFirstRoll = die1 + die2;
 int scoreThisTurn = myFirstRoll;
 cout << "\n First Roll: " << die1 << " + " << die2
 << " = " << die1 + die2;

 updateData(opponentsLastRoll));// Keep track of opponent if desired.

 for (;;) // Continue rolling until Stop()
 { // returns true.
 if (stop())
 {
 cout << ". Stopping.\n" << endl;
 break;
 }
 else
 cout << ". Continuing . . . ";

 myCurrentRoll = die1.generate() + die2.generate();
 cout << "\n Next Roll: " << die1 << " + " << die2
 << " = " << die1 + die2;

 if (myCurrentRoll == myFirstRoll)
 {
 cout << ". OOOOPS!\n" << endl;
 scoreThisTurn = 0;
 break;
 }
 else
 scoreThisTurn = max(scoreThisTurn, myCurrentRoll);
 }

 raiseScore (scoreThisTurn);
 return scoreThisTurn;
}

The takeTurn() method declares two dice of type RandomInt (see the Web site described in the

preface) and implements the player’s turn with a loop that continues until either the player decides to

stop, as determined by the stop() method, or the player rolls the first roll again. The appropriate score

is then returned.

There are many strategies which may be implemented for this game. Recall that Deep Blue used heu-

6 PART OF THE PICTURE: Artificial Intelligence

ristic search in its strategy. That was appropriate in chess, but it is not as useful here because not-one deci-

sions are, for the most part, made independently of what the other player is likely to do in the future. We

will, therefore, use a scaled-down expert system approach in which we encode knowledge from expert

players. The simplest strategy is to encode the somewhat dubious “knowledge” that a player should

always accept his or her first roll. This strategy has the virtue of simplicity, and also the advantage that it

never gets a 0 for a turn because it never risks re-rolling. It is implemented with the following stop()

method for Player1:

bool Player1::stop() const
{
 return true;
}

Another simple strategy is to randomly determine whether to go on or not. This is implemented in the

following stop() method for Player2:

bool Player2::stop() const
{
 RandomInt choice(0,1); // Declare a random coin.

 if (choice)
 return true;
 else
 return false;
}

A partial output for a game between these two strategies is shown here. This output shows the first

three turns and uses the names “Fast” and “Random” for the two strategies.

POP 11-3 A Sample Output of a Not-One Game.

Ready to play some Not-One!

Fast, turn 1
 First Roll: 2 + 2 = 4. Stopping.

Random, turn 1
 First Roll: 2 + 4 = 6. Continuing . . .
 Next Roll: 4 + 4 = 8. Continuing . . .
 Next Roll: 4 + 4 = 8. Continuing . . .
 Next Roll: 3 + 3 = 6. OOOOPS!

**
 Turn 1 - Fast: 4; random: 0
**

PART OF THE PICTURE: Artificial Intelligence 7

Fast, turn 2
 First Roll: 1 + 1 = 2. Stopping.

Random, turn 2
 First Roll: 4 + 4 = 8. Stopping.

**
 Turn 2 = Fast: 6; random: 8
**

Fast, turn 3
 First Roll: 4 + 4 = 8. Stopping.

Random, turn 3
 First Roll: 6 + 1 = 7. Continuing . . .
 Next Roll: 1 + 2 = 3. Continuing . . .
 Next Roll: 1 + 2 = 3. Stopping.

**
 Turn 3 - Fast: 14; random: 15
**

There are clearly more effective strategies for this game, which would most likely include additional

expert knowledge about how to act in certain specific situations. Expert players, for example, might likely

take more risks if they are far behind near the end of a game, or they might become more conservative if

they have a “comfortable” lead. Other approaches might involve a statistical analysis of “optimal” choice.

Implementing this additional knowledge is left as an exercise.

FURTHER READING
If you are interested in reading further on Artificial Intelligence, consider going to the following sources:

• Russell and Norvig’s text Artificial Intelligence, A Modern Approach, Prentice Hall, 1995—This is a
good, comprehensive introduction to the field, which discusses not only the computer science in AI,
but also the influence of other disciplines such as philosophy, psychology, and linguistics. They also
discuss many of the concepts and example systems mentioned in this section.

• Some of the early papers in AI are still as incisive today as they were when they first came out—Tur-
ing wrote a landmark paper on the nature of AI, “Computing Machinery and Intelligence,” Mind,
59:433–460, 1950. Searle wrote an oft-cited critique of Turing’s vision, “Minds, Brains and Pro-
grams,” Behavioral and Brain Sciences, 3:417–424, 1980.

• There are also extensive materials available on the internet—Carnegie Mellon’s AI repository at

8 PART OF THE PICTURE: Artificial Intelligence

http://www.cs.cmu.edu/Groups/AI/html/repository.html

has an extensive collection of documents and systems. The Kasparov vs. Deep Blue chess match is
discussed at length at IBM’s site,

http://www.chess.ibm.com/

EXERCISES

1. Using the not-one skeleton given in this section, program the not-one game with better heuristic func-
tions for player 1 and player 2. Try pitting your strategy against those of your colleagues.

2. Write a strategy that allows the user to play manually against other strategies.

