
11.5 Case Study: Retrieving Student Information 1

11.5 Case Study: Retrieving Student Information
Once we are able to create classes, we can represent complex objects in software. In this section,
the problem is to build an information retrieval system that a university registrar might use to
maintain student records.

PROBLEM: INFORMATION RETRIEVAL
The registrar at IO University has a data file named students.txt that contains student
records:

111223333 Bill Board
Freshman 16.0 3.15

666554444 Jose Canusee
Sophomore 16.0 3.25

777889999 Ben Dover
Junior 16.0 2.5

333221111 Stan Dupp
Senior 8.0 3.75

444556666 Ellie Kat
Senior 16.0 3.125

999887777 Isabelle Ringing
Junior 16.0 3.8

 .
 .
 .

Each pair of lines in this file has the form

studentNumber firstName lastName
studentYear credits gradePointAverage

where

studentNumber is a 9-digit (integer) student ID number,
firstName, lastName, and studentYear are character strings,
credits is the (real) number of credits this student carried this semester, and
gradePointAverage is the (real) grade point average of this student this semester.

The registrar at IOU needs a program that will let her enter student numbers, and that will
retrieve and display the information for those students.

2 11.5 Case Study: Retrieving Student Information

OBJECT-CENTERED DESIGN
BEHAVIOR. The program should read a sequence of students from the input file stu-
dents.txt. It should then repeatedly prompt for and read a student ID number from the key-
board, search the sequence of students for the position of the student with that student ID
number, and if found, display the information for that student.

OBJECTS. An abbreviated list of the objects in this problem is as follows:

As we saw in Chapter 10, we can use a vector<T> to store a sequence of objects of type T.
However, we need to store a sequence of students. Since there is no predefined type that allows
us to represent a student object, we will need to build a Student class for this.

OPERATIONS. The operations needed to solve this problem are as follows:

i. Read a sequence of students from the input file
ii. Display a prompt

iii. Read a long integer from the keyboard
iv. Search a sequence of students for one with a particular ID number
v. Display a student

vi. Repeat steps ii–v an arbitrary number of times

We can accomplish step iv using the Standard Template Library’s find() algorithm. However
find() requires that the relational operators < and == be defined for objects being compared, so
we add these operations to our list:

vii. Compare two Student objects using <
viii. Compare two Student objects using ==

ALGORITHM. Given a Student class that provides the appropriate operations, we can
organize these operations into the following algorithm:

Software Objects

Problem Objects Type Kind Name

A sequence of students vector<Student> varying studentVec

Name of the input file string constant INPUT_FILE

A student ID number long varying studentID

The position of the student vector<T>::iterator varying position

A student Student varying none

11.5 Case Study: Retrieving Student Information 3

Algorithm for Student Information Retrieval

1. Read a sequence of students from INPUT_FILE into studentVec.
2. Repeatedly do the following:

a. Prompt for and read studentID.
b. Search studentVec for the student with studentID, returning its position.
c. If the search was successful

Display the student at position.
Otherwise

Display an error message.

Before we can code this algorithm, we must build a Student class. From an internal per-
spective, the behaviors required of a Student include:

• Initialize myself with default values
• Initialize myself with explicitly supplied values
• Read my attributes from an istream and store them in me
• Display my attributes using an ostream
• Compare myself and another Student using the < and == relational operators

These are the minimal operations needed to solve the problem. To make the class truly reuse-
able, we should add (at least) the following operations:

• Access any of my attributes
• Compare myself and another Student using the !=, >, <=, and >= operators

The Student attributes required to solve this problem include the attributes stored in the input
file:

my id number, my first name, my last name, my year, my credits, and my GPA

The following listing of the file Student.h shows the class declaration containing prototypes
for these operations and instance variables for these attributes. It also contains inlined defini-
tions of the simple operations.

Case Study 11.5-1 The Header File for Class Student.

/* Student.h declares class Student.
 * ...
 ***/

4 11.5 Case Study: Retrieving Student Information

#ifndef STUDENT // compile-once
#define STUDENT // wrapper

#include <iostream> // istream, ostream
#include <string> // string
using namespace std;

class Student
{
 public: // The Interface
 // constructors
 Student();
 Student(long idNumber, const string & firstName,
 const string & lastName, const string & year,
 double credits, double gpa);
 // accessors
 long getID() const;
 string getFirstName() const;
 string getLastName() const;
 string getYear() const;
 double getCredits() const;
 double getGPA() const;
 // relational ops
 bool operator== (const Student& rightOperand) const;
 bool operator!= (const Student& rightOperand) const;
 bool operator< (const Student& rightOperand) const;
 bool operator> (const Student& rightOperand) const;
 bool operator<= (const Student& rightOperand) const;
 bool operator>= (const Student& rightOperand) const;
 // I/O
 void read(istream& in);
 void print(ostream& out) const;

 private: // Implementation Details
 // Examples:
 long myIDNumber; // 123456789
 string myFirstName, // Jane
 myLastName, // Doe
 myYear; // Senior
 double myCredits, // 15.0
 myGPA; // 3.75
};

// ******** Member Operations ***********************************
// -------- Accessors ----------------------------------
inline long Student::getID() const
{
 return myIDNumber;
}

11.5 Case Study: Retrieving Student Information 5

inline string Student::getFirstName() const
{
 return myFirstName;
}

inline string Student::getLastName() const
{
 return myLastName;
}

inline string Student::getYear() const
{
 return myYear;
}

inline double Student::getCredits() const
{
 return myCredits;
}

inline double Student::getGPA() const
{
 return myGPA;
}

// -------- relational operators ---------------------------------
inline bool Student::operator==(const Student & rightOperand) const
{
 return myIDNumber == rightOperand.getID();
}

inline bool Student::operator!=(const Student & rightOperand) const
{
 return myIDNumber != rightOperand.getID();
}

inline bool Student::operator<(const Student & rightOperand) const
{
 return myIDNumber < rightOperand.getID();
}

inline bool Student::operator>(const Student & rightOperand) const
{
 return myIDNumber > rightOperand.getID();
}

inline bool Student::operator<=(const Student & rightOperand) const
{
 return myIDNumber <= rightOperand.getID();
}

6 11.5 Case Study: Retrieving Student Information

inline bool Student::operator>=(const Student & rightOperand) const
{
 return myIDNumber >= rightOperand.getID();
}

#endif

The more complicated operations are defined in the following implementation file Student.cpp,
for separate compilation.

Case Study 11.5-2 The Implementation File for Class Student.

/* Student.cpp implements the non-trivial Student operations.
 * ...
 **/

#include "Student.h" // class Student
#include <iomanip> // setw, setprecision
using namespace std;

// -------- default-value constructor --------------------------
Student::Student ()
{
 myIDNumber = 0;
 myFirstName = "";
 myLastName = "";
 myYear = "";
 myCredits = 0.0;
 myGPA = 0.0;
}

// -------- explicit-value constructor -------------------------
Student::Student (long idNumber, const string & firstName,
 const string & lastName, const string & year,
 double credits, double GPA)
{
 myIDNumber = idNumber;
 myFirstName = firstName;
 myLastName = lastName;
 myYear = year;
 myCredits = credits;
 myGPA = GPA;
}

11.5 Case Study: Retrieving Student Information 7

// -------- input (function member) ----------------------------
void Student::read(istream & in)
{
 in >> myIDNumber >> myFirstName >> myLastName
 >> myYear >> myCredits >> myGPA;
}

// -------- output (function member) ---------------------------

void Student::print(ostream & out) const
{
 out << setw(9) << myIDNumber << '\t'
 << myFirstName << ' ' << myLastName
 << '\n' << myYear
 << setprecision(4) << showpoint
 << fixed << setw(8) << myCredits
 << setw(8) << myGPA << endl;
}

Note that the layout of the input file determines the arrangement of the data members in the
input statement in function read(). In particular, read() assumes that the student’s ID number
comes first, followed by the student’s name (first, then last), followed by the remainder of the
student’s data (year, semester hours, and GPA) on the next line. The output function produces
output having a similar format.

CODING. Given class Student and the Standard Template Library, our algorithm is rela-
tively easy to implement. The basic idea is to define a vector<Student> object named stu-
dentVec to store the sequence of Student values from the input file:

vector<Student> studentVec;

The effect of this is to create a vector of student objects that we can visualize as follows:

We can then apply any of the vector<T> operations described in chapter 9 and the STL algo-
rithms such as sort() or find() to studentVec.

The following program gives the implementation of our algorithm using this approach.

0 1 2 3 s i z e() –1. . .

s t udent Vec

my Number
my F i r s t Na me

my L a s t Na me
my Yea r

my Cr edi t s
my GPA

8 11.5 Case Study: Retrieving Student Information

Case Study 11.5-3 Student Information Retrieval.

/* registrar.cpp retrieves a student's data from a file
 * using their id #.
 * Input (file): a sequence of Students
 * Input (keyboard): one or more student numbers
 * Output: that student's data
 ***/

#include <iostream> // cin, cout
#include <fstream> // ifstream, ofstream
#include <cassert> // assert()
#include <vector> // vector<T>
#include <algorithm> // find
using namespace std;
#include "Student.h" // Student

void fill(vector<Student>& sVec, const string& fileName);

int main()
{
 const string INPUT_FILE = "students.txt";

 cout << "This program provides an information retrieval system\n"
 " by reading a series of student records from "
 << '\'' << INPUT_FILE << '\''
 << "\n and then allowing retrieval of any student's data.\n";

 vector<Student> studentVec;
 fill(studentVec, INPUT_FILE);

 long studentID; // the student we seek
 vector<Student>::iterator position; // position of the student

 for (;;) // repeat:
 {
 cout << "\nEnter the ID # of a student (eof to quit): ";
 cin >> studentID; // get student’s #

 if (cin.eof()) break; // if finished, quit

 position = find(studentVec.begin(), // search
 studentVec.end(), // the vector for
 Student(studentID, // this student #
 "", "", // using placeholder
 "", 0, 0)); // arguments

11.5 Case Study: Retrieving Student Information 9

 if (position != studentVec.end()) // if found
 {
 cout << '\n';
 (*position).print(cout); // display student
 cout << endl;
 }
 else // otherwise, tell user
 cerr << "\nThere is no student with ID # "
 << studentID << ".\n";
 }
}

// --- Definition of fill() ---
void fill(vector<Student>& sVec, const string& fileName)
{
 ifstream fin(fileName.data());
 assert(fin.is_open());
 sVec.reserve(0);

 Student aStudent;
 for (;;)
 {
 aStudent.read(fin);
 if (fin.eof()) break;
 sVec.push_back(aStudent);
 }

 fin.close();
}

Listing of input file students.txt:

111223333 Bill Board
Freshman 16.0 3.15

666554444 Jose CanuSee
Sophomore 16.0 3.25

777889999 Ben Dover
Junior 16.0 2.5

333221111 Stan Dupp
Senior 8.0 3.75

444556666 Ellie Kat
Senior 16.0 3.125

999887777 Isabelle Ringing
Junior 16.0 3.8

10 11.5 Case Study: Retrieving Student Information

Sample run:

This program provides an information retrieval system
 by reading a series of student records from 'students.dat'
 and then allowing retrieval of any student's data.

Enter the ID # of a student (eof to quit): 333221111

 333221111 Stan Dupp
 Senior 16.0000 3.7500

Enter the ID # of a student (eof to quit): 123456789

There is no student with ID # 123456789.

Enter the ID # of a student (eof to quit): 999887777

 999887777 Ringing, Isabelle
 Junior 8.0000 3.8000

Enter the ID # of a student (eof to quit): ^D

Note that we use the statement:

(*position).print(cout);

to display the data of the Student being accessed. The parenthesized subexpression:

(*position).print(cout);

dereferences position, the iterator returned by the STL find() algorithm, producing the
Student to which position “points” (i.e., the Student that find() found). The second sub-
expression:

(*position).print(cout);

sends the print() message to that Student, which responds by displaying itself.
Taking the time to implement an object as a class is an investment for the future—if the regis-

trar subsequently asks us to write a program to create a list of all students who will be graduating
with honors, our Student class makes this easy:

// ...open inStream and outStream...

cout << "Seniors whose GPA is 3.5 or greater:\n";
for (;;)
{
 aStudent.read(inStream);

 if (inStream.eof()) break;

11.5 Case Study: Retrieving Student Information 11

 if (aStudent.Year() == "Senior" && aStudent.GPA() >= 3.5)
 {
 aStudent.print(outStream);
 outStream << endl;
 }
}

// ... close inStream and outStream ...

By planning for the future when we design a class, we save ourselves and others a great deal of
time and effort.

Note that thus far, the I/O for these classes is a bit clumsy. Code like:

cout << '\n';
(*position).print(cout);
cout << endl;

is far less elegant than would be the case if the output operator were overloaded:

cout << '\n' << *position << endl;

See the OBJECTive Thinking section that follows to see how to overload the input and output
operators.

Exercises 11.5
1. Suppose that a Student object s1 will be considered to be less than another Student object s2 if:

the myLastName member of s1 is less than the myLastName member of s2; or

the myLastName member of s1 is equal to the myLastName member of s2 and the

myFirstName member of s1 is less than the myFirstName member of s2.

A rule for the greater-than relationship between two Student objects is similar. Provide definitions
for operator< and operator> that implement these relationships.

2. Suppose that a Student object s1 can be described as “equal to” another Student object s2 if the
myLastName member of s1 is equal to the myLastName member of s2 and the myFirstName
member of s1 is equal to the myFirstName member of s2. A rule for the inequality relation of two
Student objects is similar. Provide definitions for operator== and operator!= that implement
these relationships, being sure to clearly state the assumptions they make.

3. An alternative approach to equality of Student objects is to describe a Student object s1 as “equal
to” another Student object s2 if the myIDNumber member of s1 is equal to the myIDNumber
member of s2. A rule for the inequality relation of two Student objects is similar. Provide defini-
tions for operator== and operator!= that implement these relationships. What advantages are
there to implementing these operations in this way rather than as described in Exercise 2? What disad-
vantages? (Hint: Consider the problem of searching for a particular student in the registrar’s file.)

✍

12 11.5 Case Study: Retrieving Student Information

4. Using the functions defined in Exercises 1 and 2 (or 3), provide definitions for operator<= and op-
erator>= that implement the less-than-or-equal and greater-than-or-equal relations on two Stu-
dent objects.

