
10.8 Case Study: Processing Test Scores 1

10.8 Case Study: Processing Test Scores

PROBLEM
Professor von Neuperson has a file containing the class roster for each class she teaches. To help
with processing the grades for her classes, she would like a program that will allow her to: enter
a test score for each student in the file; calculate the mean of the scores, excluding the lowest and
the highest score; and then display each person’s name and score and the difference between that
score and the mean. For example, if the mean score is 75, the program should display something
like

... 82 (+7)

for a score of 82, and

... 69 (-6)

for a score of 69.

OBJECT-CENTERED DESIGN

BEHAVIOR. The program should display on the screen a prompt for the name of the class
roster file and read its name from the keyboard. It should then read a sequence of names from the
input file. The program should then read a sequence of test scores from the keyboard, prompting
for them using the sequence of names. It should eliminate the outliers of this sequence—the high
and low scores—and then compute the mean of the sequence of test scores. Finally, the program
should display this mean value, and then display the sequences of names and test scores, along
with the difference of each test score from the mean.

OBJECTS. Although most of the objects in our behavioral description are familiar, two of
them require special attention: the sequence of names and the sequence of scores. Each of these
sequences can be stored in a vector<T> for an appropriate type T.

Software Objects

Problem Objects Type Kind Name

name of the class roster file string varying inputFileName

the sequence of names vector<string> varying names

the sequence of scores vector<double> varying scores

the outliers of the sequence double, double varying none

the mean score double varying meanScore

the difference of a score and the mean score double varying none

2 10.8 Case Study: Processing Test Scores

OPERATIONS. The operations specified in our behavioral description are as follows:

i. Read a string from the keyboard
ii. Open a stream to an input file

iii. Read a sequence of string values from the file stream into a vector<string>
iv. Read a sequence of double values from the keyboard into a vector<double>, using a

sequence of string values stored in a vector<string> as prompts
v. Eliminate the outliers of a sequence of double values

vi. Compute the mean of a sequence of double values stored in a vector<double>
vii. Display a double

viii. Display the sequence of string values stored in a vector<string>, a corresponding
sequence of double values stored in a vector<double>, and the difference of two dou-
ble values

Operations, i, ii, and viii are predefined, and a straightforward modification of the read() func-
tion of Figure 10-4 can be used for operation iii. In the last section we saw that operation v can
be done with two statements, and the mean() function from Figure 10-6 in the text provides
operation vi. We will need to write a function promptAndRead() to perform operation iv and
another function printResults() for operation viii.

BEHAVIOR OF promptAndRead(). This function should receive a sequence of names
from its caller. For each name in that sequence, it should display on the screen a prompt for that
name’s score, read the score from the keyboard, and append it to a sequence of double values.
The resulting sequence of double values should be passed back to the caller.

OBJECTS FOR promptAndRead(). The objects in this subproblem are as follows:

OPERATIONS FOR promptAndRead(). The operations for this function are:

Software Objects

Problem Objects Type Kind Movement Name

a sequence of names vector<string> constant received (in) names

a name in the sequence string varying none names[i]

a double value double varying none aScore

a sequence of doubles vector<double> varying passed back (out) scores

for-loop-control variable int varying none i

10.8 Case Study: Processing Test Scores 3

i. Receive a sequence of names from the caller
ii. Access one string from a sequence of string values

iii. Display a string on the screen
iv. Read a double from the keyboard
v. Append a double to a sequence of double values

vi. Repeat operations ii–v once for each string in a sequence of string values
vii. Pass a sequence of double values back to the caller

Each of these operations is predefined.

ALGORITHM FOR promptAndRead(). We can organize these operations into the fol-
lowing algorithm for the function promptAndRead():

Algorithm for promptAndRead()

1. Receive names, a sequence of names from the caller.
2. For each index i in names:

a. Display names[i] in a prompt for a score.
b. Read a double from cin into aScore.
c. Append aScore to a sequence of double values named scores.

3. Pass scores back to the caller.

CODING AND TESTING OF promptAndRead(). The following function encodes the
preceding algorithm in C++.

Case Study 10.8-1 Prompting and Reading Test Scores.

/* promptAndRead reads a sequence of test scores from the keyboard.
 *
 * Receive: names, a vector of strings,
 * scores, a vector of doubles
 * Precondition: names is not empty AND scores is empty
 * Output: prompts for test scores, using names
 * Input: a sequence of test scores
 * Pass back: scores containing the input values
 **/

void promptAndRead(const vector<string>& names, vector<double>& scores)
{
 double aScore; // input variable
 for (int i = 0; i < names.size(); i++) // for each index in sequence
 {
 cout << "Enter the score for "
 << names[i] << ": "; // prompt,

4 10.8 Case Study: Processing Test Scores

 cin >> aScore; // read, and
 scores.push_back(aScore); // append
 }
}

Once promptAndRead() has been thoroughly tested, we continue to the function printRe-
sults, which is to perform the following operation in the original problem:

viii. Display the sequence of string values stored in a vector<string>, a corresponding
sequence of double values stored in a vector<double>, and the difference of two dou-
ble values

BEHAVIOR OF printResults(). This function should receive from its caller a
sequence of string values (names), a sequence of scores, and a mean score. It should display the
mean value on the screen, and then for each name in the sequence of names, it should display
that name, the corresponding entry in the sequence of scores, and the difference of that score and
the mean.

OBJECTS FOR printResults(). The objects in this subproblem are as follows:

OPERATIONS FOR printResults()). The operations in this function are

i. Receive a double, a sequence of string values, and a sequence of double values from
the caller

ii. Display a double on the screen, with appropriate formatting for a test score
iii. Access a string in a sequence of string values
iv. Access the corresponding double in a sequence of double values
v. Display the accessed string and double on the screen

Software Objects

Problem Objects Type Kind Movement Name

a sequence of names vector<string> constant received (in) names

a sequence of scores vector<double> constant received (in) scores

the mean score double constant received (in) meanScore

a name in the sequence string varying none names[i]

the corresponding score double varying none scores[i]

the loop-control variable int varying none i

10.8 Case Study: Processing Test Scores 5

vi. Display the difference of two doubles, showing the sign
vii. Repeat operations iii–vi once for each string in a sequence of string values

Each of these operations is predefined in C++.

ALGORITHM FOR printResults(). We can organize these operations into the follow-
ing algorithm:

Algorithm for printResults()

1. Receive meanScore, a double; names, a sequence of string values; and scores, a
sequence of double values from the caller.

2. Display meanScore via cout.
3. For each index i in names:

a. Display names[i], scores[i], and scores[i] – meanScore, with appropriate
formatting.

CODING AND TESTING OF printResults(). The following function encodes the
preceding algorithm in C++.

Case Study 10.8-2 Displaying Names, Test Scores, and Mean Difference.

/* printResults() displays names, test scores, and differences
 * between the scores and the mean score.
 *
 * Receive: out, an ostream,
 * meanScore, a double,
 * names, a vector of strings,
 * scores, a vector of doubles
 * Output: each name in names, each score in scores
 * and the difference of each score and meanScore
 ***/

#include <iostream> // ostream
#include <iomanip> // setprecision()
using namespace std;

void printResults(ostream& out, double meanScore,
 const vector<string> & names,
 const vector<double> & scores)
{
 out << "\nThe mean score is "
 << right << fixed << showpoint // format for test scores
 << setprecision(1) << meanScore // show mean score
 << " (ignoring max and min).\n"
 << endl;

6 10.8 Case Study: Processing Test Scores

 for (int i = 0; i < names.size(); i++) // for each index in names:
 out << setw(20) << names[i] << left // display name,
 << noshowpos << setw(5) << right
 << scores[i] << "\t(" // score, and
 << showpos << setw(5)
 << scores[i] - meanScore // difference from mean
 << ')' << endl;
}

ALGORITHM FOR ORIGINAL PROBLEM. Once we have functions to perform each of
the operations needed for our problem, we are ready to organize those operations into an algo-
rithm.

Algorithm for Score-Processing Problem

1. Prompt for and read the name of the class roster file into inputFileName.
2. Open an ifstream named inStream to the file whose name is in inputFileName. (If this

fails, display an error message and terminate the algorithm.)
3. Read a sequence of names from inputFileName into roster.
4. Using roster to prompt, read a sequence of test scores into scores.
5. Save a copy of scores in originalScores.
6. Eliminate the outliers from scores.
7. Compute the mean of the values in scores, and store it in meanScore.
8. Via cout, display meanScore, each name in names, the corresponding score from origi-

nalScores, and the difference of that score from meanScore.

CODING. The following program implements the preceding algorithm. It uses the vec-
tor<T> class template.

Case Study 10.8-3 Test Score Processing.

/* testScores.cpp processes a sequence of test scores, using a class
 * roster stored in a file.
 * Input(keyboard): the name of the roster file and
 * a sequence of test scores
 * Input(file): a sequence of names
 * Precondition: the sequence of names is not empty
 * Output: the mean of the sequence of test scores,
 * each student's name, the score for that student,
 * and the difference between the score and the mean
**/

10.8 Case Study: Processing Test Scores 7

#include <iostream> // cout, cin, <<, >>
#include <fstream> // ifstream
#include <string> // string
#include <vector> // vector<T>
#include <algorithm> // max, min_element()
using namespace std;
#include "myVector.h" // read(), mean()

void promptAndRead(const vector<string>& names, vector<double>& scores);

void printResults(ostream& out, double meanScore,
 const vector<string>& names,
 const vector<double>& scores);

int main()
{
 cout << "This program requires a roster of student names.\n"
 << "Enter the name of the roster file: ";
 string inputFileName;
 cin >> inputFileName;

 ifstream fin(inputFileName.data()); // stream to roster
 vector<string> roster; // the class roster
 read(inputFileName, roster); // -- read it

 vector<double> scores; // the score sequence
 promptAndRead(roster, scores); // -- read it

 vector<double> originalScores = scores; // save a copy
 // remove extreme values
 scores.erase(min_element(scores.begin(), scores.end()));
 scores.erase(max_element(scores.begin(), scores.end()));

 double meanScore = mean(scores); // find mean w/o extremes
 // output w/ extremes
 printResults(cout, meanScore, roster, originalScores);
}

/*** Insert the definitions of:
 PromptAndRead() from Case Study 10.8-1, and
 PrintResults() from Case Study 10.8-2 here. ***/

Listing of file names.txt used in sample run:

Jack_Sprat
Jill_Tumbling
Mary_HattaLamb
Peter_Pumpkin
Jack_B_Nimble
Cinderella_Slipper
Prince_Charming

8 10.8 Case Study: Processing Test Scores

Sample run:

This program requires a roster of student names.
Enter the name of the roster file: names.txt
Enter the score for Jack_Sprat: 100
Enter the score for Jill_Tumbling: 5
Enter the score for Mary_HattaLamb: 70
Enter the score for Peter_Pumpkin: 75
Enter the score for Jack_B_Nimble: 80
Enter the score for Cinderella_Slipper: 73
Enter the score for Prince_Charming: 77

The mean score is 75.0 (ignoring max and min).

Jack_Sprat 100.0 (+25.0)
Jill_Tumbling 5.0 (-70.0)
Mary_HattaLamb 70.0 (-5.0)
Peter_Pumpkin 75.0 (+0.0)
Jack_B_Nimble 80.0 (+5.0)
Cinderella_Slipper 73.0 (-2.0)
Prince_Charming 77.0 (+2.0)

