
PART OF THE PICTURE: Database Systems 1

PART OF THE PICTURE: Database Systems

BY KEITH VANDER LINDEN, CALVIN COLLEGE

One of our local supermarket chains keeps detailed records of its products, sales, customers, and supplies.

They can tell you the current price of any item in any of their stores, who supplied it, and how long it’s

been on the shelf. They can tell you how many people bought tortilla chips at the rock-bottom sale price

last weekend and whether they also bought salsa and bean dip to go with them. Not surprisingly, this level

of record keeping produces a staggering volume of information, commonly called data. Why do they go

to all this trouble? The answer—they have to make business decisions and these decisions are based on

data. The more accurate and detailed the data, the better the decisions can be. Was the rock-bottom sale

price for the chips too high, or too low? Did they make an overall profit? How many units of chips should

they buy next time? The data can help answer these questions, and thus are critical to business in a com-

petitive market.

This use of data is not unique to the grocery business. Banks keep records of our accounts and our

transactions, universities and colleges keep records of our tuition costs and our performance, airlines keep

records on which planes are flying where and who has paid to ride on them. As in the case of the super-

market, these data sets can become very large, and must be maintained for long periods of time. Further-

more, they must be conveniently accessible to many people. It is useful, therefore, to store and maintain

them on computers. The data sets themselves, when stored on a computer, are commonly called data-

bases, and the programs designed to maintain them are called database management systems.

The current chapter has discussed files, and it is not hard to see that their ability to store large amounts

of data in a persistent manner is important for database systems. Section 8.1 gave an example of how files

can be used to maintain a small meteorological database. As we work with that database, however, a prob-

lem arises: The database will change, as all realistic databases do. We may, for example, want to add

temperature readings to the pressure readings already contained there. Adding this information to the file

is easy enough, but we must also modify the code by adding an additional variable to store the tempera-

ture, an extra input command to read the value, and we must know the order in which the pressure and

temperature readings are stored in the file. Another complication would arise if we wanted to add infor-

mation on the particular instruments used to collect the readings. This would probably require a separate

file of information for each of the instruments, new code to read and process this file, and some additional

code allowing us to record which readings were taken with which instruments.

What started as a fairly simple problem, with a small driver program and a single data file, has become

much more complex. In addition, this complexity is likely to increase as the database grows, and as more

and more people want to access it. Database systems are designed to address these problems. Although

varied, they tend to provide a number of common facilities.

2 PART OF THE PICTURE: Database Systems

• High-level views of the data—Databases allow programmers to view the data at a higher level, ignor-
ing some of the details of the location and format of the files.

• Access routines—A high-level view of the data wouldn’t be of much use if the programmer couldn’t
retrieve and manipulate the data. Database systems, therefore, provide what is called a query lan-
guage, which provides a set of operations that a programmer can use when accessing and manipulat-
ing a database.

• Support for large databases—Databases tend to be large, frequently too large to fit into a computer’s
main memory. For example, the supermarket database mentioned earlier maintains approximately one
terabyte of data, that’s 1012 bytes or 1,000 gigabytes. Database systems are designed to manipulate
large databases such as this without reading them into memory all at once.

• Security—It is frequently important to restrict access to sensitive or proprietary data in a database.
Most database systems provide this capability.

• Data sharing—The data stored in a database is often of interest to many different people. Several peo-
ple may, therefore, want to retrieve or modify the data at the same time. Database systems typically
provide a check-in/check-out protocol for the data, much like the protocol for checking out books at a
public library. This ensures that only one person can manipulate the data at a time.

THE RELATIONAL MODEL
Different models may be used to design a database system, each of which attempts to provide the features

just mentioned. One particular model, called the relational model, has become an industry standard. In

this model, the database is viewed as a set of tables with one row for each entry. For instance, the data

from a simple employee database would be viewed as follows:

In this set of data, called a table, the top row specifies the contents of each column of data. In this case

we have the employee’s name, ID number, pay rate, and department. The table has one row, called a

record, for each employee, and each record has one entry for each column, called a field. We will call

this table the Employee table. Note that there is no mention here of the files that contain the data, or in

what format the data is represented. The database system takes care of these details so the programmer

doesn’t have to.

Name IDNumber Pay Rate Department

John 45678 7.50 Accounting

Mark 56789 8.75 Accounting

Paul 67891 9.35 Marketing

Matt 78912 10.50 Accounting

Gabe 89123 6.35 Marketing

Joel 91234 10.50 Development

Naomi 98765 7.15 Development

Jamie 12345 9.15 Development

April 23456 8.75 Accounting

Jodi 34567 10.50 Service

PART OF THE PICTURE: Database Systems 3

One popular query language for the relational model is called SQL (for “Structured Query Lan-

guage”). SQL provides commands to add data for tables, retrieve data from tables, and modify data in

tables. For example, consider the following command:

SELECT *
FROM Employee
WHERE Rate = 10.5;

This command will retrieve, or select, all the records (specified by the "*") from the Employee

table that have a pay rate of $10.50. The resulting records are as follows:

Note that the result is itself a table. This elegant feature allows the output of one SQL command to be

used as the input to another.

AN EXAMPLE: THE SELECT COMMAND
To gain a better understanding of the relationship between file manipulation and database management,

we will build a simple relational database system with a scaled-down implementation of the select com-

mand. This implementation will go in a library so we’ll be able to see the differences between the file

manipulation used to implement the select command (in the library), and the use of the command itself

(in a driver program).

The select command assumes a relational view of the database, so we must implement one. Recall that

the relational data model views a database as a table or set of tables where the structure of each table can

be specified by indicating the fields it will contain, and the type of data stored in each field. This structure

is called a schema. The schema for the Employee table is as follows1:

Name string
ID int
Rate double
Department string

This schema says that Employee will contain a record for each employee and that each record will

contain the employee’s name (a string), the employee’s ID number (an int), his or her pay rate (a

Name IDNumber Pay Rate Department

Matthew 78912 10.50 Accounting

Joel 91234 10.50 Development

Jodi 34567 10.50 Service

1. Note that a full database system would maintain a considerably more complex schema than this, but this will serve
our current needs.

4 PART OF THE PICTURE: Database Systems

double), and a department name (a string). We will store this schema in a schema file named

Employee.schema.

The actual data for Employee will be stored in a separate data file named Employee.data. The

contents of this file for the Employee table are as follows:

John 45678 7.50 Accounting
Mark 56789 8.75 Accounting
Paul 67891 9.35 Marketing
Matt 78912 10.50 Accounting
Gabe 89123 6.35 Marketing
Joel 91234 10.50 Development
Naomi 98765 7.15 Development
Jamie 12345 9.15 Development
April 23456 8.75 Accounting
Jodi 34567 10.50 Service

Notice how the columns in Employee.data match the rows in Employee.schema. The first col-

umn is the name (a string), second column is the ID number (an int), and so forth.

The representation of the Employee table, therefore, consists of two files: Employee.schema

and Employee.data. We can now implement a select() function which makes use of these files.

The function will have four parameters:

• the name of a table to operate on (e.g., Employee);
• the name of a field on which to select (e.g., Rate);
• the relational operator to use (we’ll assume == for now);
• the field value to check (e.g., 10.5).

It will return all the records in the given table whose specified field is equal to the specified value. So,

for example, the C++ function call equivalent to the select command given would be:

select("Employee", "RATE", "=", "10.50");

The following program is a simple driver for this function that prompts the user of the system for the

name of a table, a field name, a relational operator, and an appropriate value for that field. The input for-

mat is very similar to that of the SQL select command shown. It then calls the select() function.

PART OF THE PICTURE: Database Systems 5

POP 9-1 A Driver Program to Test the Select Function.

...
int main()
{
 string
 tableName, // table, not its file name
 projectedFieldName, // the field being projected
 selectFieldName, // field that you want to restrict
 selectOperator, // rel-operator for the restriction
 selectFieldValue; // value the field should have

 // Get the specifics of the select command from the user
 // (using a format similar to the SQL select statement.
 cout << "\nWelcome to SelectBase, a simple database system"
 "\n\nPlease complete the following query: "
 "\n\nSELECT *";
 cin >> projectedFieldName;
 cout << "\nFROM ";
 cin >> tableName;
 cout << "WHERE ";
 cin >> selectFieldName >> selectOperator
 >> selectFieldValue;
 // Execute the Select command.
 select(tableName, selectFieldName, selectOperator, selectFieldValue);
}

Sample run:

Welcome to SelectBase, a simple database system

Please complete the following query:

SELECT *
FROM Employee
WHERE Rate = 10.5

Matt 78912 10.50 Accounting
Joel 91234 10.50 Development
Jodi 34567 10.50 Service

This driver function illustrates the level of database programming. There are no file manipulation

commands here, no for loops, no I/O streams, and the programmer doesn’t know anything about the

.schema and .data files or their format. All of these things are maintained by the implementation of

select(), and thus do not concern the database programmer.

To see inside the implementation of select(), consider the code segment shown in the following

program. This is where we place the nested loop that reads each field (as specified in

Employee.schema) for each record (as contained in Employee.data). To make the implementa-

6 PART OF THE PICTURE: Database Systems

tion more general, the order and types of the fields are specified by the contents of the .schema file,

rather than being hard-coded. This way, select() can manipulate many different tables, so long as

they have consistent schema and data files.

POP 9-2 Nested for Loops for the select() Function.

for (;;) // for each record in the data file
 {
 outputLine = ""; // add to this one field at a time.
 selectLine = false; // Assume the record is not selected.

 for (;;) // for each field in the schema file
 {
 // Get next field specification from the schema file.
 schemaFile >> currentFieldName >> currentFieldType;
 if (schemaFile.eof()) break;

 dataFile >> currentFieldValue;
 if (dataFile.eof())
 {
 schemaFile.close();
 dataFile.close();
 return;
 }

 // See if this record satisfies the selection criteria
 if (recordSelected(selectFieldName, currentFieldName,
 selectFieldValue, currentFieldValue,
 currentFieldType))
 selectLine = true;

 // Add the new field to the output string.
 outputline += currentFieldValue + "\t ";
 }

 // Output the current record if it has been selected.
 if (selectLine)
 cout << outputLine << endl;

 // Prepare to do a second pass through the schema file.
 schemaFile.clear(); // reset flags
 schemaFile.seekg(0, ios::beg); // reset get position
 }

PART OF THE PICTURE: Database Systems 7

Exercises
1. Because the driver program discussed in this section reads relational tables based on a schema, you can

perform many useful database operations without modifying the code. Try some of the following:
a) Add a field to the database for the employee’s last name. Remember that you’ll have to modify

both the schema and the data file in a consistent manner.
b) Create a new table for a college bookstore that maintains information on books (e.g., the title,

author, ISBN number, and price).
c) Create a new table for your class, including fields for student names, ID numbers, and grades

for the various projects you’ve done.

2. Modify the program in this section to add column headers to the table output. The headers should be
based on the names of the fields given in the schema file.

3. The implementation of select() given in this section always uses the == operator. Modify the pro-
gram to implement the other relational operators as well (i.e., <, >, <=, >=, and !=).

4. Modify the program from exercise 3 to write the results of the select command to a file rather than writ-
ing them to cout. The program should prompt the user for an output file name. It should then write
the results to this file, or to cout if no filename is given. Now, use this program to select the following
records:

a) Find the employees in Employee with a pay rate equal to $10.50 and a Department of “Ac-
counting”.

b) Find the employees in Employee with a pay rate greater than $8.00 and less than $10.00.

5. The relational model also supports a command that returns a specified column (or columns) from a ta-
ble rather than returning the full record. This command, called project, is implemented in SQL by al-
lowing the programmer to replace the "*" in the SELECT clause of the select command with a field
name (or names).

Modify the program in this section to support this. You should allow the user to enter either a "*" in
the SELECT clause, or a specific field name. For example, if the user enters * in the SELECT clause,
the full records will be returned:

Welcome to SelectBase, a simple database system

Please complete the following query:

SELECT *
FROM Employee
WHERE Department = Development

Joel 91234 10.50 Development
Naomi 98765 7.15 Development
Jamie 12345 9.15 Development

If, on the other hand, the user enters a field name in the SELECT clause, only the value of that field
will be returned:

✍

8 PART OF THE PICTURE: Database Systems

Welcome to SelectBase, a simple database system

Please complete the following query:

SELECT Name
FROM Employee
WHERE Department = Development

Joel
Naomi
Jamie

FURTHER READING
The field of database systems is active, both in research and in applications. If you are interested in read-

ing additional material, consider going to the following sources:

• Ullman and Widom’s text A First Course in Database Systems, Prentice Hall, 1997—This is
a good, current overview of the field of database systems. It covers the relational model, and
also deals with newer object-oriented approaches to database modeling.

• E. F. Codd’s original paper, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM, 1970, 13(6), pages 377–387—This is a classic paper on the
relational database model.

• For information on some current database systems, try visiting the Oracle or Sybase corpo-
ration web sites: www.oracle.com; www.sybase.com.

