MORE ABOUT
FUNCTION PARAMETERS

Default Values for Parameters in Functions

Problem. We wish to construct a function that will evaluate any real-valued poly-
nomial function of degree 4 or less for a given real value x. The general form of
such a polynomial is

a + bx + cx? + dx® + ex*
where the coefficients a, b, ¢, d, and e are real constants.
One Solution. The function in Code 1 below is one way to solve the problem. Its
specification is:

Receive: The real values a, b, ¢, d, e, and x

Return: The real value a + bx + cx? + dx® + ex*

It simply returns the value of an appropriate C++ expression for
a + bx + cx? + dx® + ex*.

Code 1. Evaluating Polynomials — Version 1.

/* Polynomial will evaluate any polynomial up to degree 4.
*

* Receive: the real values x, a, b, ¢, d, and e
* Return: the real value a + bx + cx2 + dx"3 + ex™4

#include < cmath >
double Polynomial(double x, double a, double b,
double c, double d, double e)

{
}

return a + b*x + c*pow(x, 2.0) + d*pow(x, 3.0) + e*pow(X, 4.0);

L.Nyhoff

L.Nyhoff

L.Nyhoff
Code 1. Evaluating Polynomials — Version 1.

L.Nyhoff
1

L.Nyhoff
Default Values for Parameters in Functions

L.Nyhoff
 MORE ABOUT
FUNCTION PARAMETERS

More About Function Parameters

The Difficulty. The difficulty with Polynomial() is that to make Poly-
nomial() a (relatively) general function, we used six parameters. In applications
that involve lower-degree polynomials, however, this generality becomes a nui-
sance, because we must pass arguments for all of the parameters each time we call
Polynomial() . For example, to calculate the value of

P(x) =4 +4x + x?
when x is 12, we would use the call
yVal = Polynomial(12.0, 4.0, 4.0, 1.0, 0.0, 0.0);
and to compute the value of the linear function
O(x) =3 —4x
when x is 7, we would use the call:
yVal = Polynomial(7.0, 3.0, -4.0, 0.0, 0.0, 0.0);

The Solution. To avoid this inconvenience, C++ allows the programmer to specify
a default value for a parameter. If a function with default-valued parameters is
called and no arguments are passed to these parameters, they receive their speci-
fied default values.

To provide a default value for a parameter, we simply use the assignment opera-
tor (=) to give the parameter its default value, usually in the prototype of the func-
tion. For example, suppose we change the heading of Polynomial() to

double Polynomial(double x, double a = 0.0, double b = 0.0,
double ¢ = 0.0, double d = 0.0, double e = 0.0)

Now if we need to compute the value
P(x) =4 + 4x + x?
when x is 12, we can use the call:
yVal = Polynomial(12.0, 4.0, 4.0, 1.0);

and since only four arguments are passed, the last two parameters (d and e) are
given their default values (0.0). Similarly, to compute the function

Ok) =3 —4x
when x is 8, we can use the call
yVal = Polynomial(8.0, 3.0, -4.0);

and since only three arguments are passed, the last three parameters (c, d, and e)
will be given their default values.

Limitations in Using Default Parameter Values. There are several restrictions that
C++ imposes on the use of parameters with default values:

1. Default values for parameters of a function can be given only once. The prac-
tical implication of this rule is that a parameter should be given a default
value in the prototype of the function, or in its definition, but not both.

2. Ifthe default parameter values are given in the prototype of the function, and

L.Nyhoff

More About Function Parameters

that prototype is stored in the header file of a library, then any program that
uses the #include directive to insert that header file can use the default val-
ues. This is the recommended approach.

3. If the default values are given in the definition of the function, and the func-
tion’s definition is stored in the implementation file of a library, then the de-
fault values cannot be used by a program that inserts the header file of that li-
brary (using the #include directive) . This is because a program that uses a
library (by inserting its header file) “sees” the prototypes in the header file
of the library but never “sees” the function definitions in the implementa-
tion file. Consequently, we suggest that the default values be given in the
function prototype, since otherwise the default parameter values cannot be
used outside the library.

4. [f an argument is supplied for a parameter p that has a default value, then an
argument must be supplied for every parameter that precedes p in the para-
meter list. For example, suppose that we wish to evaluate

P(x) =2 + 3x?
when x is 1. Then we are unable to take advantage of the default value of
parameter b and must use the expression:
Polynomial(1.0, 2.0, 0.0, 3.0)

to call Polynomial() . The reason for this is that in determining which ar-
gument goes with which parameter, C++ matches from left to right, associat-
ing the first argument with the first parameter, the second argument with
the second parameter, and so on. Thus, the expression;

Polynomial(1.0, 2.0, 3.0)
evaluates the polynomial
2+ 3x

instead of the polynomial we intended. Note that making this mistake re-
sults in a logic error, not a syntax error. The compiler will process such calls
without generating an error.

5. Parameters that receive default values must be declared at the end of the para-
meter list. Stated differently, a parameter that does not receive a default
value must precede all parameters that do. For example, a syntax error re-
sults if we try to declare Polynomial() as

double Polynomial(double x, double a = 0.0, double b,
double ¢ = 0.0, double d = 0.0, double e = 0.0);

because parameter a, which has a default value, precedes parameter b,
which has no default value. Again, this rule makes sense, since otherwise a
call like

Polynomial(3.0, 2.0, 1.0);

is ambiguous because it is not clear which default values the programmer in-
tended to use. While x is clearly meant to be 3.0, the programmer could

L.Nyhoff
More About Function Parameters 3

L.Nyhoff

L.Nyhoff

More About Function Parameters

have intended that a be 2.0 and b be 1.0; or that a be 0.0, b be 2.0 and ¢ be
1.0; or that a be 0.0, b be 2.0, c be 0.0, and d be 1.0; and so on.

Varying the Number of Arguments in Functions

The default parameter value mechanism allows us to call a function with fewer ar-
guments than the specified number of parameters. Now, we consider the problem
of constructing a function that can be called with more arguments than the num-
ber specified. To illustrate, consider the following generalization of the preceding
polynomial problem.

Problem. We wish to construct a function that will evaluate a polynomial of de-
gree n, for any positive integer n.

Solution. A specification for the function is

Receive: the degree of the polynomial
x, the value at which the polynomial is to be evaluated
a, the constant term in the polynomial
the coefficients of higher-order terms (if any)

Return: The value of the polynomial at x

To compute the value of the polynomial, we can use the following algorithm:

Algorithm for Evaluating a Polynomial

1. Initialize polyValue to a, and power_of_x to 1.0.
2. For each value i in the range 1 through degree:

a. Get the ith coefficient of the polynomial, storing it in nextCoef:

b. Multiply power_of x by x.

c¢. Multiply nextCoef by powerOfX and add the product to polyValue.
3. Return the value of polyValue.

Coding. To code the function, we need a mechanism for passing different numbers
of arguments to the function, depending on the degree of the polynomial we want
to use. We need a function in which there is no limit on the number of arguments.
A stub for a function that accomplishes this is as follows:

#include < cstdarg> // declarations to permit
[/l varying numbers of arguments

double Polynomial(int degree, double x, double a, ...)

{
}

The declarations in the stdarg library allow the use of ellipses (. . .) within the
parameter list to inform the C++ compiler that if this function is called with more
than three arguments, the extra parameters should not be treated as errors. The
compiler thus “turns off” argument-checking when processing such calls. It is left
to programmers that use this ellipses mechanism to ensure that the number and
type of arguments are correct.

When a function whose parameter list includes ellipses is called, any additional
arguments that are present are placed into a special type of list, called a

L.Nyhoff
4 More About Function Parameters

L.Nyhoff

L.Nyhoff
Varying the Number of Arguments in Functions

L.Nyhoff

L.Nyhoff

More About Function Parameters

va_list (for varying-argument list). The type va_list and the operations for
manipulating it are declared in the library stdarg , so its header file must be in-
serted (using the #include directive) before the function definition. There are
three basic operations for manipulating a varying-argument list. In the following
descriptions of these operations, list is of type va_list

» va_start(list, lastParam). initializes list for processing;
lastParam is the name of the last parameter in the function declaration.

» va_arg(list, type) : retrieves and returns the next value of the
specified type from list (assuming list has been initialized with
va_start()).

» va_end(list) . *“cleansup” list after processing is completed.

This type va_list and the preceding operations make it possible to implement
the polynomial-evaluation algorithm as shown in the following function.

Code 2. Evaluating Polynomials — Version 2.

/* Polynomial will evaluate a polynomial of any degree.
*
* Receive: the int degree, a real value x, and the real
* coefficients a, ... of a polynomial
* Return: the real value of the polynomial at x
HRAAAK * /

#include < cstdarg>

double Polynomial(int degree, double x, double a, ...)

{
double
power_of x=1.0, /I powers of x
nextCoef, /I next coefficient
polyValue = a; /I polynomial's value at x

va_list argList;
va_start(argList, a); /l argList begins after a

for (inti=1;i<=degree; i++)

{

power _of x*= x; Il i-th power of X

nextCoef = va_arg(argList, double); // get the ith coefficient

polyValue += nextCoef * power _of_x ; /l'ith term of polynomial
}
va_end(argList); /I clean up the list

return polyValue;

L.Nyhoff

L.Nyhoff

L.Nyhoff

L.Nyhoff

L.Nyhoff
More About Function Parameters 5

L.Nyhoff

L.Nyhoff

L.Nyhoff
Code 2. Evaluating Polynomials — Version 2.

L.Nyhoff

6 More About Function Parameters

The following is a driver program that tests this function for polynomials of
degree = 3.

Code 3. A Driver Program for Polynomial().

/* polytester.cpp is a driver program to test function Polynomial().
*

* Qutput: the value of Polynomial() for polynomials of various degrees

*kkkkkkkk kkkkkkkkk /

#include <iostream>
using namespace std;

double Polynomial(int degree, double x, double a, ...);
int main()

cout // P(1.0) for P(x) =2
<< Polynomial(0, 1.0, 2.0) << end|

// P(1.0) for P(x) =2 + 3x
<< Polynomial(1, 1.0, 2.0, 3.0) << endl

/I P(1.0) for P(x) = 2 + 3x + 4x"2
<< Polynomial(2, 1.0, 2.0, 3.0, 4.0) << endl

/I P(1.0) for P(x) = 2 + 3x + 4x"2 + 5x"3
<< Polynomial(3, 1.0, 2.0, 3.0, 4.0, 5.0) << end];

return O;

}

/* Insert the #include directive and the definition
of function Polynomial() from Code 2 here. */

Sample run:

= ©O© 0N

Note that it is the programmer’s responsibility to ensure that Polynomial() is
called correctly. If we were to erroneously pass int values instead of double val-
ues to Polynomial()

Polynomial(4, 1, 2, 3, 4, 5)

then the arguments would be stored as int (instead of double) values within the
va_list .Ifint values are stored in one memory word and double values in two

L.Nyhoff
6 More About Function Parameters

L.Nyhoff

L.Nyhoff

L.Nyhoff
Code 3. A Driver Program for Polynomial().

L.Nyhoff
#include <iostream>
using namespace std;

More About Function Parameters

memory words, then the first call to va_arg() , va_arg(argList, double),
would interpret the two (int) words storing 3 and 4 as a double value, and conse-
guently return an erroneous result. This is one situation where different types of
numeric data cannot be freely intermixed: If a function that uses this ellipses mech-
anism is expecting a series of arguments of a particular type, then it must receive
arguments of that type.

L.Nyhoff
More About Function Parameters 7

L.Nyhoff

