
7.7 Case Study: Calculating Depreciation 1

7.7 Case Study: Calculating Depreciation

PROBLEM
Depreciation is a decrease in the value over time of some asset due to wear and tear, decay,
declining price, and so on. For example, suppose that a company purchases a new computer sys-
tem for $200,000 that will serve its needs for 5 years. After that time, called the useful life of the
computer, it can be sold at an estimated price of $50,000, which is the computer’s salvage value.
Thus, the value of the computing equipment will have depreciated $150,000 over the 5-year
period. The calculation of the value lost in each of several years is an important accounting prob-
lem, and there are several ways of calculating this quantity. We want to write one or more func-
tions to calculate depreciation tables that display the depreciation in each year of an item’s
useful life.

 OBJECT-CENTERED DESIGN

BEHAVIOR. Each function should receive from its caller the amount to be depreciated and
the number of years. The function should then display on the screen a depreciation table.

OBJECTS. The objects in this problem are straightforward:

Each function will have the same specification:

Receive: amount and numYears
Output: a depreciation table

OPERATIONS AND ALGORITHMS. The operations in this problem depend on the
method used to calculate the depreciation. There are several different methods, and we will con-
sider two of them here.

One standard method is the straight-line method, in which the amount to be depreciated is
divided evenly over the specified number of years. For example, straight-line depreciation of
$150,000 over a 5-year period gives an annual depreciation of $150,000 / 5 = $30,000:

Software Objects

Problem Objects Type Kind Movement Name

The amount to be depreciated varying real received amount

The item's useful life (in years) varying integer received numYears

The annual depreciation varying real — depreciation

2 7.7 Case Study: Calculating Depreciation

With this method, the value of an asset decreases a fixed amount each year.
The operations needed to calculate straight-line depreciation are all provided by C++ opera-

tions and statements:

i. Divide a real (amount) by an integer (numYears)
ii. Output an integer (the year) and a real (the depreciation)

iii. Repeat ii a specified number (numYears) of times.

Organizing them in an algorithm is straightforward.

Algorithm for Straight-Line Depreciation

1. Calculate depreciation = amount / numYears.
2. For year ranging from 1 through numYears do the following:

Display year and depreciation.

Another common method of calculating depreciation is called the sum-of-the-years’-digits
method. To illustrate it, consider again depreciating $150,000 over a 5-year period. We first cal-
culate the “sum of the years’ digits,” 1 + 2 + 3 + 4 + 5 = 15. In the first year, 5/15 of $150,000
($50,000) is depreciated; in the second year, 4/15 of $150,000 ($40,000) is depreciated; and so
on, giving the following depreciation table:

In addition to the operations for the straight-line method, the sum-of-the-years’-digits method
requires:

iv. Sum the integers from 1 through some given integer (numYears)

For this we can use the function sum() in Case Study 7.7.1.

Year Depreciation

1 $30,000

2 $30,000

3 $30,000

4 $30,000

5 $30,000

Year Depreciation

1 $50,000

2 $40,000

3 $30,000

4 $20,000

5 $10,000

7.7 Case Study: Calculating Depreciation 3

An algorithm for displaying annual depreciation values using this method is as follows:

Algorithm for Sum-of-the-Years-Digits Depreciation

1. Calculate sum = 1 + 2 + . . . + numYears.
2. For year ranging from 1 through numYears do the following:

a. Calculate depreciation = (numYears – year + 1) * amount / sum
b. Display year and depreciation.

CODING. The function straightLine() in Case Study 7.7-1 implements the algorithm for
the straight-line method of depreciation and the function sumOfYears() implements the algo-
rithm for the sum-of-the-years’-digits method. Because these functions are useful in a variety of
problems, we would probably store them in a library with these function definitions along with
that for function sum() in an implementation file and the prototypes

void straightLine(double amount, int numYears);
void sumOfYears(double amount, int numYears);

in the corresponding header file (e.g., Depreciation.h).

Case Study 7.7-1 Depreciation Functions.

#include <iostream> // cout
#include <iomanip> // setprecision(), setw(), setiosflags()
#include <cassert> // assert()
using namespace std;

/* straightLine() displays a depreciation table for a given
 * amount over numYears years using the straight-line method.
 *
 * Receive: amount, a real
 * numYears, an integer
 * Output: a depreciation table
 * Uses: format manipulators from iostream and iomanip
 **/

void straightLine(double amount, int numYears)
{
 double depreciation = amount / numYears;

 cout << "\nYear - Depreciation"
 << "\n--------------------\n";

 cout << fixed << showpoint << right // set up format for $$
 << setprecision(2);

 for (int year = 1; year <= numYears; year++)
 cout << setw(3) << year
 << setw(13) << depreciation << endl;
}

4 7.7 Case Study: Calculating Depreciation

/* sumOfYears() displays a depreciation table for a given
 * amount over numYears years using the sum-of-the-years'-digits
 * method.
 *
 * Receive: amount, a real
 * numYears, an integer
 * Output: a depreciation table
 * Uses: function Sum() from Figure 6.1
 * format manipulators from iostream and iomanip
 **/

void sumOfYears(double amount, int numYears)
{
 cout << "\nYear - Depreciation"
 << "\n--------------------\n";

 double yearSum = sum(numYears);

 double depreciation;

 cout << fixed << showpoint << right // set up format for $$
 << setprecision(2);

 for (int year = 1; year <= numYears; year++)
 {
 depreciation = (numYears - year + 1) * amount / yearSum;
 cout << setw(3) << year
 << setw(13) << depreciation << endl;
 }
}

TESTING. The program in Case Study 7.7-2 uses these depreciation functions. It begins by
defining a menu

Enter:
 a - to enter information about a new item
 b - to use the straight-line method
 c - to use the sum-of-the-years'-digits method
 d - to quit
-->

which it passes to the function getMenuChoice() described in Section 7.2 of the text. This
function repeatedly displays a menu and reads the user’s choice until the user enters a valid
choice, which is then returned to the caller. For option a, the user enters an item’s purchase price,
its salvage value, and its useful life. Options b and c call the functions straightLine() and
sumOfYears(), respectively, to display the depreciation tables. The sentinel value QUIT =

'd' signals the end of input and a switch statement is used to process non-QUIT options.

7.7 Case Study: Calculating Depreciation 5

Case Study 7.7-2 Depreciation Functions.

/* depreciationTables.cpp computes depreciation tables.
 *
 * Input: purchase price, salvage value, and useful
 * life of an item
 * Output: depreciation tables.
 **/

#include "Depreciation.h"
#include <iostream> // <<, >>, cout, cin
#include <string> // string
using namespace std;

// or if not using this library,
// insert the prototypes of straightLine() and sumOfYears() here and
// insert after main(), the function sum() from Figure 7.2 of the text
// and the #include directives and function definitions from
// Case Study 7.7-1.

char getMenuChoice(string MENU, char firstChoice, char lastChoice);

int main()
{
 const string MENU =
 "\nEnter:\n"
 " a - to enter information for a new item\n"
 " b - to use the straight-line method\n"
 " c - to use the sum-of-the-years'-digits method\n"
 " d - to quit\n"
 "--> ";
 const char QUIT = 'd';

 cout << "This program computes depreciation tables using\n"
 << "various methods of depreciation.\n";

 char option; // menu option selected by user
 double purchasePrice, // item's purchase price,
 salvageValue, // salvage value, and
 amount; // amount to depreciate, and
 int usefulLife; // useful life in years

 for (;;)
 {
 option = getMenuChoice(MENU, 'a', QUIT); // get user's choice

 if (option == QUIT) break;

6 7.7 Case Study: Calculating Depreciation

 switch (option) // perform the option selected
 {
 case 'a': // get new item information
 cout << "What is the item's:\n"
 " purchase price? ";
 cin >> purchasePrice;
 cout << " salvage value? ";
 cin >> salvageValue;
 cout << " useful life? ";
 cin >> usefulLife;
 amount = purchasePrice - salvageValue;
 break;
 case 'b': // straight-line method
 straightLine(amount, usefulLife);
 break;
 case 'c': // sum-of-years-digits method
 sumOfYears(amount, usefulLife);
 break;
 default: // execution shouldn’t get here
 cerr << "*** Invalid menu choice: " << option << endl;
 }
 }
}

/* getMenuChoice() repeatedly displays a MENU of choices in the
 * range firstChoice to lastChoice and reads a user's choice until
 * a valid choice is entered, which is then returned to the caller.
 *
 * Receive: MENU, a string
 * firstChoice and lastChoice, chars
 * Return: the choice entered by the user
 **/

char getMenuChoice(string MENU, char firstChoice, char lastChoice)
{
 char choice; // what the user enters

 for (;;)
 {
 cout << MENU;
 cin >> choice;

 if ((choice >= firstChoice) && (choice <= lastChoice))
 return choice;

 cerr << "\nI'm sorry, but " << choice
 << " is not a valid menu choice.\n";
 }
}

Sample run:

7.7 Case Study: Calculating Depreciation 7

This program computes depreciation tables using
various methods of depreciation.

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> a

What is the item's
 purchase price? 2000.00
 salvage value? 500.00
 useful life? 5

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> b

Year - Depreciation

 1 300.00
 2 300.00
 3 300.00
 4 300.00
 5 300.00

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> c

Year - Depreciation

 1 500.00
 2 400.00
 3 300.00
 4 200.00
 5 100.00

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> x

8 7.7 Case Study: Calculating Depreciation

I'm sorry, but x is not a valid menu choice

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> a

What is the item's
 purchase price? 1200.00
 salvage value? 200.00
 useful life? 3

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> b

Year - Depreciation

 1 333.33
 2 333.33
 3 333.33

Enter:
 a - to enter information for a new item
 b - to use the straight-line method
 c - to use the sum-of-years'-digits method
 d - to quit
--> d

Exercise
1. A third method of calculating depreciation is the double-declining balance method. In this method, if

an amount is to be depreciated over n years, 2 / n times the undepreciated balance is depreciated annu-

ally. For example, in the depreciation of $150,000 over a 5-year period using the double-declining bal-

ance method, 2/5 of $150,000 ($60,000) would be depreciated the first year, leaving an undepreciated

balance of $90,000. In the second year, 2/5 of $90,000 ($36,000) would be depreciated, leaving an

undepreciated balance of $54,000. Since only a fraction of the remaining balance is depreciated each

year, the entire amount will never be depreciated. Consequently, it is permissible to switch to the

straight-line method at any time. Develop an algorithm for this third method of calculating deprecia-

7.7 Case Study: Calculating Depreciation 9

tion.

Modify the program in Case Study 7.7-1 so that it includes this third method of calculating depre-

ciation as one of the options. Also, modify the output produced by the depreciation functions so that

the year numbers in all the depreciation tables begin with the current year rather than with year num-

ber 1.

