
3.2 Arithmetic Expressions 1

Bitwise Operators. C++ also provides other numeric operators, including operations that
can be applied to integer data at the individual bit level: ~ (negation), & (bitwise and), | (bitwise
or), ̂(bitwise exclusive or), << (bitshift left), and << (bitshift right).

In the following descriptions, b, b1, and b2 denote binary digits (0 or 1); x and y are integers.

To illustrate the behavior of these operators, the statements

int i = 6; // 0110

cout << (i | 5) << endl; // 0110 OR 0101 = 0111

cout << (i & 5) << endl; // 0110 AND 0101 = 0100
cout << (i ^ 5) << endl; // 0110 XOR 0101 = 0011

cout << (i << 1) << endl; // 0110 LS 1 = 1100

cout << (i >> 1) << endl; // 0110 RS 1 = 0011

cout << (~i) << endl; // NEG 0110 = 111...11001

produce the following output:1

7

4

3
12

3

-7

Operator Operation Description

~ bitwise negation ~b is 0 if b is 1; ~b is 1 if b is 0

& bitwise and b1 & b2 is 1 if both b1 and b2 are 1;
it is 0 otherwise

| bitwise or b1 | b2 is 1 if either b1 or b2 or both are
1; it is 0 otherwise

^ bitwise exclusive or b1 ^ b2 is 1 if exactly one of b1 or b2 is
1; it is 0 otherwise

<< bitshift left x << y is the value obtained by shifting
the bits in x y positions to the left

>> bitshift right x >> y is the value obtained by shifting
the bits in x y positions to the right*

* Note: There is also an unsigned right shift operator >>> that fills the vacated bit positions at the left with
0s. >> is a signed right-shift operator that fills these positions with the sign bit of the integer being
shifted.

1. For the last output statement, see the Part Of The Picture section of Chapter 2 regarding two’s complement repre-
sentation of integers.

2 2.2 Arithmetic Expressions

In practice, such operations are used in programs that must inspect memory or interact
directly with a computer’s hardware, such as low-level graphics methods or operating system
methods.

