Consider a simply supported beam to which a single concentrated load is applied:

Given: *P* is the load, *E* is the modulus of elasticity, *I* is the moment of inertia, *a* is the distance from the left end of the beam to the load, and b = L - a is the distance from the right end of the beam.

For $a \le b$, the maximum deflection is calculated as:

$$Max_Deflection = \frac{-Pa(L^2 - a^2)^{3/2}}{9\sqrt{3}EIL}$$

the deflection at the load is calculated as:

$$Deflection_at_Load = \frac{-Pa^2b^2}{3EIL}$$

and the deflection at the beam's center is calculated as:

$$Deflection_at_Center = \frac{-Pa(3L^2 - 4a^2)}{48EI}$$

For a > b, simply interchange a and b in the preceding equations.

Write a main program that:

- Inputs values for L, P, E, I. and an *increment* by which to move the load
- Outputs headings for a 4-column table whose contents are described in (3) below
- Uses a for loop to:
 - (1) Move the load position along the beam from the left end to the right end in the specified increment
 - (2) At each position, main() must call a void function that receives L, P, E, I, and the current load position and that calculates and passes back the 3 deflections to main()
 - (3) main() then outputs a row of values the load position and the three deflections into the table.

Use the setw() I/O-manipulator to set the column widths so that nice even columns are produced in the table, aligned under the column headings. Execute your program twice:

- (1) With L = 360 inches, P = 24,000 pounds, $E = 30 \times 10^6$ psi, I = 795.5in⁴, 6 inch increment
- (2) With your own set of inputs.

Beam Project Grade Sheet

Name:

Hand in:

This grade sheet attached to:

- A printout of your program (all source code if you use a library)
- Two execution traces one with the inputs given in the project description and one with your own inputs.

Category	<u>Points</u> <u>Possible</u>	<u>Points</u> <u>Received</u>
Correctness of deflection-calculator function	30	
Correctness of main program (including following instructions)	30	
Output/Build Window; Program Executions; Format of Tables Output	15	
Structure & Organization (efficiency, no unnecessary code, arrangement of statements, doesn't waste memory)	5	
Documentation (opening doc. and doc. for the function)	10	
<u>Style & Readability</u> (meaningful names, indentation, alignment, white space (between lines and within lines)	10	

TOTAL

100