More About Valarrays

In addition to val ar r ays, there are four auxiliary types that specify subsets of aval arr ay:
slice_array, gslice_array, mask_array, and i ndi rect _array. We will briefly
describe how each of them is used and the subsets of aval ar r ay that they determine.

SLICES. Onesubset of aval ar r ay isadlice, which selects every nth element of aval arr ay
for some integer n. As we shall see, thisin turn makes it possible to think of aval array asa
two-dimensional array having n rows (or n columns).

A declaration of asl i ce hastheform

slice s(start, size, stride);

which specifiesthe size indicesstart, start + stride,start + 2*stride,. .. ina
val array. The member functions start (), size(), and stride() return the values
start, size, and stride, respectively.

To illustrate their use, consider theval array v andsli cessl, s2, and s3 defined by

double d[] = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110};
val array<doubl e> v(d, 12);

slice s1(0,4,1), s2(4,4,1), s3(8,4,1);

Then, v[sl1], v[s2], and v[s3] are of typeslice_array and contain the following
values:

v[s1l]: 0, 10, 20, 30
v[s2]:40, 50, 60, 70
v[s3]:80, 90, 100, 110

From this we see how these slices make it possibleto viewv asa3” 4 two-dimensional array:

0 10 20 30
V =14050 60 70
80 90 100 110

A gdlice (generalized slice) contains essentially the information of n dlices; instead of one
stride and one size, there are n strides and n sizes. The declarations of gsl i ce objects are the
same as for sl i ces, except that size and stride are val ar r ays whose elements are integer
indices. Toillustrate, consider the declarations

size_t sizearr[] = {2, 3}, stridearr[] = {4, 1};
val array<si ze_t> sz(sizearr, 2), str(stridearr, 2);

gslice gs(0, sz, str);

Then, v[gs] isof typegsl i ce_array and contains: 0, 10, 20, 40, 50, 60. If we think of v as
the preceding two-dimensional 3~ 4 array and gs as specifying that the size (sz) of the subarray
tobeselectedistobe2” 3andthestrides(st r) areto be4inthefirst dimension, 1 in the second,
thenv[gs] isthe2” 3 subarray in the upper-left corner.

vigs] = | 0 1020
40 50 60

MAsSKS. A mask_array provides another way to select a subset of aval array. A maskis
simply abooleanval ar r ay, which when used as a subscript of aval ar r ay, specifiesfor each
index whether or not that element of theval ar r ay isto beincluded in the subset.

Toillustrate, consider theval array v1 defined by

doubl e d1[] = {0, 10, 20, 30, 40, 50};
val array<doubl e> v1(dl, 6);

and the mask defined by

bool b[] = {true, false, false, true, true, false};
val array<bool > mask(b, 6);

Then v2 and v3 defined by

val ar ray<doubl e>
v2 = vl1[mask], /1 0, 30, 40
v3 = powm vl mask], 2); [// 0, 900, 1600

are of type mask _ar r ay and have the values indicated in the comments.

INDIRECT ARRAYS. Ani ndi rect _array specifies an arbitrary subset and reordering of a
val array. Itisconstructed by first defining aval ar r ay of integers, which specify indices of
the original val ar r ay, where duplicate indices are allowed. For example, consider theval ar -

ray i nd defined by

size_t indarr[] = {4, 2, 0, 5 3, 1, 0, 5};
val array<si ze t> ind(indarr, 8);

Thenval array v4 defined by

val array<doubl e> v4 = vl[indarr];

isof typei ndi rect _array and contains40, 20, 0, 50, 30, 10, 0, 50.

EXERCISES

Exercises 14 deal with operations on n-dimensional vectors, which are sequences of n real num-
bers. In the description of each operation, A and B are assumed to be n-dimensional vectors:

A=(ag, @, " ap)
B = (by, by, ", by)
Write functions for the operations, using val ar r ays to store the vectors. Y ou should test your func-
tions with driver programs.
1. Output an n-dimensional vector using <<.
2. Input an n-dimensional vector using >>.
3. Compute and return the magnitude of an n-dimensional vector:

|Al = ,\/a% +a% + Ya +a2n

4. Compute and return the inner (or dot) product of two n-dimensional vectors (whichisa
scalar):

A B Zagtby +apthy o+ o= 4 (3%b)
=1

