
More About Valarrays

In addition to valarrays, there are four auxiliary types that specify subsets of a valarray:
slice_array, gslice_array, mask_array, and indirect_array. We will briefly
describe how each of them is used and the subsets of a valarray that they determine.

SLICES. One subset of a valarray is a slice, which selects every nth element of a valarray
for some integer n. As we shall see, this in turn makes it possible to think of a valarray as a
two-dimensional array having n rows (or n columns).

A declaration of a slice has the form

slice s(start, size, stride);

which specifies the size indices start, start + stride, start + 2*stride, • • • in a
valarray. The member functions start(), size(), and stride() return the values
start, size, and stride, respectively.

To illustrate their use, consider the valarray v and slices s1, s2, and s3 defined by

double d[] = {0,10,20,30,40,50,60,70,80,90,100,110};
valarray<double> v(d, 12);

slice s1(0,4,1), s2(4,4,1), s3(8,4,1);

Then, v[s1], v[s2], and v[s3] are of type slice_array and contain the following
values:

v[s1]: 0, 10, 20, 30
v[s2]:40, 50, 60, 70
v[s3]:80, 90, 100, 110

From this we see how these slices make it possible to view v as a 3 × 4 two-dimensional array:

A gslice (generalized slice) contains essentially the information of n slices; instead of one
stride and one size, there are n strides and n sizes. The declarations of gslice objects are the
same as for slices, except that size and stride are valarrays whose elements are integer
indices. To illustrate, consider the declarations

v
0 10 20 30

40 50 60 70

80 90 100 110

=

size_t sizearr[] = {2, 3}, stridearr[] = {4, 1};
valarray<size_t> sz(sizearr, 2), str(stridearr, 2);

gslice gs(0, sz, str);

Then, v[gs] is of type gslice_array and contains: 0, 10, 20, 40, 50, 60. If we think of v as
the preceding two-dimensional 3 × 4 array and gs as specifying that the size (sz) of the subarray
to be selected is to be 2 × 3 and the strides (str) are to be 4 in the first dimension, 1 in the second,
then v[gs]is the 2 × 3 subarray in the upper-left corner.

MASKS. A mask_array provides another way to select a subset of a valarray. A mask is
simply a boolean valarray, which when used as a subscript of a valarray, specifies for each
index whether or not that element of the valarray is to be included in the subset.

To illustrate, consider the valarray v1 defined by

double d1[] = {0,10,20,30,40,50};
valarray<double> v1(d1, 6);

and the mask defined by

bool b[] = {true, false, false, true, true, false};
valarray<bool> mask(b, 6);

Then v2 and v3 defined by

valarray<double>
 v2 = v1[mask], // 0, 30, 40
 v3 = pow(v1[mask], 2); // 0, 900, 1600

are of type mask_array and have the values indicated in the comments.

INDIRECT ARRAYS. An indirect_array specifies an arbitrary subset and reordering of a
valarray. It is constructed by first defining a valarray of integers, which specify indices of
the original valarray, where duplicate indices are allowed. For example, consider the valar-
ray ind defined by

v gs[] 0 10 20

40 50 60
=

size_t indarr[] = {4, 2, 0, 5, 3, 1, 0, 5};
valarray<size_t> ind(indarr, 8);

Then valarray v4 defined by

valarray<double> v4 = v1[indarr];

is of type indirect_array and contains 40, 20, 0, 50, 30, 10, 0, 50.

EXERCISES

Exercises 1–4 deal with operations on n-dimensional vectors, which are sequences of n real num-
bers. In the description of each operation, A and B are assumed to be n-dimensional vectors:

A = (a1, a2, ..., an)

B = (b1, b2, ..., bn)

Write functions for the operations, using valarrays to store the vectors. You should test your func-
tions with driver programs.

1. Output an n-dimensional vector using <<.

2. Input an n-dimensional vector using >>.

3. Compute and return the magnitude of an n-dimensional vector:

4. Compute and return the inner (or dot) product of two n-dimensional vectors (which is a
scalar):

A B = a1*b1 + a2*b2 + ... + an*bn = (ai*bi)

A a
2
1 a

2
2 … a

2
n+ + +=

i 1=

n

∑

