
Pattern Matching

In Sec. 5.4 we considered the pattern-matching problem that occurs in many applications, such as
text editing and text processing, a good deal of work has gone into designing more efficient algo-
rithms. Here we describe in detail one such algorithm, called the Knuth-Morris-Pratt algorithm.
Another efficient approach is the Boyer-Moore method described in several algorithms texts.

We review first the brute force method described in Sec. 5.4 and how it can be improved.  We
consider again the example of finding the first occurrence of the pattern “abcabd” in the line of
text“abcabcabdabba”:

We begin matching characters in pattern with those in text and find that the first five charac-
ters match, but the next characters do not:

When such a mismatch occurs, we must backtrack to the beginning of pattern, shift one position
to the right in text, and start the search over again:

This time a mismatch occurs immediately, and so we backtrack once more to the beginning of
pattern, shift another position to the right in text, and try again:



Another mismatch of the first characters occurs, so we backtrack and shift once again:

On the next search, all of the characters in pattern match the corresponding characters in text, and
thus the pattern has been located in the line of text.

In this example, only three backtracks were required, and two of these required backing up
only one character. The situation may be much worse, however. To illustrate, suppose that the text
to be searched consists of one hundred characters, each of which is the same, and the pattern con-
sists of 49 of these same characters followed by a different character, for example,

In beginning our search for pattern in text, we find that the first 49 characters match but that the
last character in pattern does not match the corresponding character in text:

We must therefore backtrack to the beginning of pattern, shift one position to the right in text, and
repeat the search. As before, we make 49 successful comparisons of characters in pattern with
characters in text before a mismatch occurs:

This same thing happens again and again until eventually we reach the end of text and are able to
determine that pattern is not found in text. After each unsuccessful scan, we must backtrack from
the last character of pattern way back to the first character and restart the search one position to
the right in text.



The source of inefficiency in this algorithm is the backtracking required whenever a mis-
match occurs. To illustrate how it can be avoided, consider again the first example in which pat-
tern = “abcabd” and text = “abcabcabdabba”:

In the first scan, we find that pattern[0] = text[0], pattern[1] = text[1], pattern[2] = text[2], pat-
tern[3] = text[3], and pattern[4] = text[4], but pattern[5] ≠ text[5]:

Examining pattern, we see that pattern[0] ≠ pattern[1]; thus pattern[0] cannot possibly match
text[1] because pattern[1] did. Similarly, since pattern[0] is different from pattern[2], which
matched text[2], neither can pattern[0] match text[2]. Consequently, we can immediately “slide”
pattern three positions to the right, eliminating the backtracks to positions 1 and 2 in text. More-
over, examining the part of pattern that has matched a substring of text,

abcab

we see that we need not check pattern[0] and pattern[1] again since they are the same as pat-
tern[3] and pattern[4], respectively, which have already matched characters in text.

This partial match means that we can continue our search at position 5 in text and position 2 in
pattern; no backtracking to examine characters before that in the position where a mismatch
occurred is necessary at all!

Now consider the general problem of finding the index of a pattern p0 p1 ... pm in a text t0t1 ...

tn and suppose that these strings are stored in the arrays pattern and text so that pattern[i] = pi and
text[j] = tj. Also suppose that in attempting to locate pattern in text we have come to a point where



the first i characters in pattern have matched characters in text, but a mismatch occurs when pat-
tern[i] is compared with text[j].

To avoid backtracking, we must shift pattern to the right so that the search can continue with
text[j] and pattern[k], for some k < i.

It is clear from this diagram that in order to do this, the first k characters of pattern must be identi-
cal to the k characters that precede pattern[i] and that pattern[k] must be different from pattern[i]
so that pattern[k] has a chance of matching text[j]:

Let us denote this value k by next[i]. Thus, as we have just observed, next[i] is the position in
pattern at which the search can continue by comparing pattern[next[i]] with the character text[j]
that did not match pattern[i]; that is, we slide pattern to the right to align pattern[next[i]] with
text[j] and continue searching at this point. If no such k exists, we take next[i] = –1 to indicate that
the search is to resume with pattern[0] and text[j + 1]. (In this case, we can think of sliding pattern
to the right to align the nonexistent character in position –1 with text[j] and resume the search.)



Knuth-Morris-Pratt Pattern Matching Algorithm

/*  Algorithm to find a pattern in a text string. The pattern is stored in 

positions 0 through m of the array pattern, and the text is stored in 

positions 0 through n of the array text. 

Input: Strings text and pattern 
Return: Location of pattern in text, –1 if not found 

------------------------------------------------------------------------------------------------*/

1. Initialize each of index, i, and j to 0.
/*index is the beginning position of the substring of text being

compared with pattern, and indices i and j run through pattern and
text, respectively. */

2. While i = m and j = n:
If pattern[i] = text[j] then // match
  Increment each of i and j 
Else do the following: // mismatch
a. /* Slide pattern to the right the appropriate distance */
   Add i – next[i] to index.
b. /* Determine where the search is to continue */

     If next[i] ≠ –1 then
Set i equal to next[i].

     Else
Set i equal to 0 and increment j by 1.

3. If i > m then index is the index of pattern in text; otherwise,
pattern does not appear in text.

To illustrate, consider the following pattern

pattern = abcaababc
and assume that the we are given the following table of next values for this pattern:

Now suppose that we wish to determine the index of pattern in

text = aabcbabcaabcaababcba
Initially, index, i, and j are 0. Both text[0] and pattern[0] are ‘a’, and so both i and j are incre-
mented to 1. A mismatch now occurs:



Since next[1] = 0, index is set to index + (1 – next[1]) = index + (1 – 0) = 1, i is set to next[1] = 0, j
retains the value 1, and the search continues by comparing pattern[next[1]] = pattern[0] with
text[1]. The next mismatch occurs when i = 3 and j = 4:

Since next[3] = –1, index is set to index + (3 – (–1)) = 5, i is set to 0, and j is incremented to 5. The
search then resumes by comparing pattern[0] with text[5], and continues until the next mismatch,
when j = 11 and i = 6:

Now, next[6] = 2, so index is updated to index + (6 – 2) = 9, i is set equal to next[6] = 2, j remains
at 11, and the search resumes by comparing pattern[2] with text[11]. This search locates a sub-
string of text that matches pattern,



so the algorithm terminates with index = 9 as the index of pattern in text.
To complete our discussion of the Knuth-Morris-Pratt algorithm, we must describe how the

table of next values is computed. Recall that next[i] is the length k of the longest prefix pattern[0],
pattern[1], . . ., pattern[k - 1] of pattern that matches the k characters preceding pattern[i] but pat-
tern[k] ≠ pattern[i]. For example, consider again the pattern “abcaababc”:

next[6] = 2 since the characters a, b in positions 0 and 1 match those in positions 4 and 5, and pat-
tern[2] = ‘c’ is different from pattern[6] = ‘a’. The following diagram shows this matching prefix
and suffix in abcaaba but that the characters that follow these in positions 2 and 6 do not match:

This property of pattern guarantees that if a mismatch occurs in comparing some character in text
with pattern[6], the search can continue by comparing pattern[next[6]] = pattern[2] with this
character:

The determination that next[4] = 1 is similar to that for next[6]; the following diagram dis-
plays the matching prefix and suffix in abca and the fact that pattern[1] ≠ pattern[4]:



The calculation of next[5] requires a bit more care. In looking for a matching prefix and suffix in
abcaa, we find one of length 1, that is, pattern[0] = pattern[4]; however, the characters that follow
these matching substrings, pattern[1] and pattern[5] are not different. Thus next[5] is not 1. Since
an empty prefix always matches an empty suffix, and since pattern[0] = ‘a’ differs from pattern[5]
= ‘b’, we obtain next[5] = 0:

By similar analyses, the remaining values of the next table can be verified.
An algorithm for calculating next values using this method is essentially the same as the pat-

tern-matching algorithm except that the pattern is matched against itself. To see this, consider
again a general pattern p0p1 ... pm. Clearly next[0] must have the value –1 since there are no char-
acters that precede pattern[0]. Now, if next[0], . . ., next[j - 1] have been determined, these values
can be used to calculate next[j] as follows. We “slide” a copy of pattern across itself until we find
a prefix (possibly empty) that matches the characters preceding pattern[j]:

If this prefix has length k (possibly 0) and pattern[k] ≠ pattern[j], then next[j] = k by definition.
However, if pattern[k] = pattern[j], then clearly next[j] has the same value as next[k], which has
already been calculated. This method of calculating next values is used in the following algorithm:

Algorithm for next Table

/*  Algorithm to compute next values for a pattern stored in 
positions 0 through m of the array pattern.

Input: String pattern 
Return: The array next.

---------------------------------------------------------------------------------------*/



1. Initialize next[0] to –1, k to –1, and j to 0.
2. While j ≤ m: 

a. While (k ≠ –1) and pattern[k] ≠ pattern[j] 
Set k equal to next[k].

b. Increment k and j by 1.
c. If pattern[j] = pattern[k] then

Set next[j] equal to next[k].
Else
Set next[j] equal to k.

To illustrate, consider the pattern used earlier
pattern = abcaababc

The following table traces the execution of this algorithm as it calculates the next table for this
pattern.

Instruction k j next Value Computed

Initially –1 0 next[0] = –1

2a

2b

2c

–1

0

0

0

1

1 next[1] = 0

2a

2b

2c

next[0] = –1

0

0

1

2

2 next[2] = 0

2a

2b

2c

next[0] = –1

0

0

2

3

3 next[3] = next[0] = –1

2a

2b

2c

0

1

1

3

4

4 next[4] =1

2a

2b

2c

next[1] = 0

0

1

1

4

4

5

5 next[5] = next[1] =0

2a

2b

2c

1

2

2

5

6

6 next[6] =2

2a

2b

2c

next[2] = 0

0

1

1

6

6

7

7 next[7] = next[1] = 0

2a

2b

2c

1

2

2

7

8

8 next[8] = next[2] = 0



The Knuth-Morris-Pratt solution to the pattern-matching problem has an interesting history.
A theorem proved by Cook in 1970 states that any problem that can be solved using an abstract
model of a computer called a pushdown automaton can be solved in time proportional to the size
of the problem using an actual computer (more precisely, using a random access machine). In par-
ticular, this theorem implies that the existence of an algorithm for solving the pattern-matching
problem in time proportional to m + n where m and n are the maximum indices in arrays that store
the pattern and text, respectively. Knuth and Pratt painstakingly reconstructed the proof of Cook’s
theorem and so constructed the pattern-matching algorithm described in this section. At approxi-
mately the same time, Morris constructed essentially the same algorithm while considering the
practical problem of designing a text editor. Thus we see that not all algorithms are discovered by
a “flash of insight” and that theoretical computer science does indeed sometimes lead to practical
applications.

EXERCISES

Compute next tables for the patterns in Exercises 1–8.

1. A B R A C A D A B R A

2. A A A A A 

3. M I S S I S S I P P I

4. I S S I S S I P P I

5. B A B B A B A B

6. 1 0 1 0 0 1 1

7. 1 0 0 1 0 1 1 1

8. 1 0 0 1 0 0 1 0 0 1

9–16. Construct tables tracing the action of the next table algorithm for the patterns in Exercises
1–8.


