Unions

Some languages — C and C++, in particular —provide a data structure called aunion that is sim-
ilar to astructure but differsfrom it in that the members of a structure are allocated different mem-
ory locations, whereas the members of a union share memory; that is, they al have the same
memory address. In C++, the syntax of a union is the same as that for a struct except that the
word st ruct isreplaced by uni on:

uni on TypeName /'l TypeName is optional

{
b

decl arati ons of menbers

Unions can be used to build structures that have fixed partsand variant parts. All objects of
such atype have the same members in corresponding fixed parts but there may be different mem-
bers in the variant parts. Such structures are called variant records in some languages such as
Pascal and are useful in certain specialized problems. To illustrate, suppose computer-usage
records for employees at a computer center have one of three structures:

Support staff

Id number

Password

Resource limit
Resources used to date
Department code

Research

Id number

Password

Account number
Security clearance (1-10)
Department code

Administration
Id number
Password
Division

All of these structures can be incorporated into a single struct by storing the common information
(id number and password) in the fixed part of the struct and the other information in a union
whose members are structs containing the varying parts in these structures:



struct Supportlinfo
{ /1
doubl e resourceLimt, //
resourcesUsed; [/

support - person’ s
limt on conputer resources
resources used to date
departnment in which enpl oyed

researcher’s

research account

security clearance: 1-10
departnment in which enpl oyed

adm nistrator’s

di vi si on
user’s
id nunber
passwor d
tag: ‘S = support,
‘R = research
‘A = adm nistration
varying info

char departnent; Il
H
struct Researchlnfo
{ /1
i nt account, /1]
securityd earance; Il
char departnent; Il
H
struct Administrationlinfo
{ /1
char divi sion; /1]
}
struct Conput er Usagel nfo
{ /1]
unsi gned i dNunber ; Il
string password; Il
char category; /1
/1
/1
uni on /1]
{
Supportlnfo support;
Researchlnfo research
Adm ni strationlnfo adm nistration;
}
H

Note that a member cat egor y has also been added as a tag field to specify which of the three

variantsisin effect for a given employee.

In OOP languages, structures like this are not needed because inheritance makes it possible
to encapsulate the fixed information in a base class and from it derive a class for each variant. As
we show in Chap. 10, the OOP approach would be to define a base class containing the common
information (id number, password, and category), and then derive classes that inherit these mem-
bers (and operations) from the base class and contain new members (and operations) for the

attributes peculiar to that class. We might picture this as follows:



idsuzber
e Sl ——— = | papaword
oategary
A i o,
- o x"'\.

.-"'-J . E"“\-
idumber idiurber Ldsunber
poaaword pasmword paasoed

dotived dasses — eateqory oetegory category

resourcelimit | | ASCOURE
resourcesFaed safarityOlsarasts divialon

deparkment GRpRCTEeNT Adnindseration
Bupportatats Rosaarch

Structs in Memory

We have seen that to store an array, sufficient memory is alocated to store all the array elements,
and that each array reference involves two steps: First, an address translation must be performed
to locate where that array element is stored, and second, the bit string stored there must be inter-
preted in the manner prescribed by the type specification for the array elements. Similarly, storing
astructure al so requires sufficient memory to store all of the members that comprise the structure.
Address trandation is again required to determine the location in which a particular member is
stored, but this address trandlation is slightly more complex than for arrays because different
members usually require a different number of bytes for storage. Also, unlike arrays, different
interpretations of the bit strings are usually required for different members, because the members
of a structure need not be of the same type.

To illustrate, consider customer records that consist of a customer’s account number, name,
an account balance, and the type of account,

enum Account Type { WHOLESALE, EDUCATI ONAL
REGULAR, HI GH_RI SK}

struct Custoner
{

i nt number;

char nane[ 20];

doubl e bal ance;

Account Type account;



and suppose that i nt s and enuns are stored in 4 bytes, char sin 1 byte, and doubl esin 8
bytes. This definition of struct ¢ instructs the compiler to reserve ablock of 40 bytesto store such
a struct, the first of which, as for arrays, is called the base address. The four bytes beginning at
this base address might then be allocated to c. nunber , the next 20 bytesto c. nane, the next 8
bytesto c. bal ance, and the next 4 bytesto c. account as pictured on the next page. When
one of these members is accessed, the bit string stored in the associated bytes is interpreted
according to the type specified for that field in the struct declaration.

Cust omer c;

EXERCISES

For Exercises 1-5, assume that values of type char are stored in one byte, i nt s in 4 bytes,
doubl e valuesin 8 bytes. Give diagrams like those in the text showing where each field of the

following structs would be stored:

1

struct Date
{

char nonth[ 8];
i nt day, year;

i

struct Poi nt

{
doubl e x, v;

s

struct C assRecord

{
i nt snunb;
char nane[ 16];
char sex;
i nt testScore[5];

b

struct Student Record

{
i nt snunb; char[16] nane;
G adel nf o grades;
doubl e fi nal NuntScor e;
char |l etter G ade;

b

where thetype G adel nf o isdeclared by



struct Gradelnfo

/'l tag = 'D
/'l tag ='W
/I tag = ‘L’
/Il tag ='T

{
doubl e homework, tests, exam
}
struct Transaction
{
char custoner Nane[ 24] ;
i nt custoner Nunber ;
Nuneri cDat e transDat e;
char transType;// tag
uni on
{
doubl e deposit;
doubl e wi t hdrawal ;
Loanl nfo | oan;
Transferlnfo transfer;
}
H

wheretypes Nuner i cDat e, Loanl nf o, and Tr ansf er | nf o are declared by:

struct NunericDate

{
i nt nmonth, day, year;
}s
struct Loanlnfo
{
i nt nunber;
doubl e paynent, interest,
}s
struct Transferlnfo
{

i nt account;
doubl e anpunt ;
char code;

H

newbal ance;



