
12.1

NyhPreff.fm Page iii Friday, June 18, 2004 12:14 PM 

Preface
The first edition of this text grew out of the author’s experience teaching an introduc-
tory data structures course (commonly referred to as CS2) for nearly two decades. It 
has served as a sequel to the widely used C++: An Introduction to Computing by Joel 
Adams and Larry Nyhoff, which grew out of their many years of teaching a first pro-
gramming course (CS1) in C++. But computer science curricula change as do teach-
ing pedagogy and methodology. In keeping with these changes, the introductory C++ 
text underwent revisions and has recently appeared in a third edition. 

The content of the second course in computing also has changed, with the broad-
ening of the traditional study of data structures to a study of abstract data types 
(ADTs) being one of the major trends. Consequently, there is an increased emphasis 
on ADTs in this new edition and a name change thus seemed appropriate: ADTs, 
Data Structures, and Problem Solving with C++. And as one might expect, there is a 
corresponding increased emphasis on object-oriented design. 

In addition, the author’s pedagogy has been honed over many years of successful 
teaching.1 Reflecting this, the presentation in this new edition has been improved by 
reordering some topics, rewriting several sections, and adding new material. Many 
suggestions also came from those who diligently and thoroughly reviewed the manu-
script and its several revisions. Their constructive comments and positive evaluations 
were very encouraging and much appreciated. 

To Instructors 

If you used the first edition and liked it, I trust you will like this new edition even 
more. Scan the overview and list of new features that appear later in this preface to 
see what some of the improvements are. Those of you who haven’t used or who 
stopped using the first edition and are looking at this edition as one of several candi-
dates for your course will, I hope, give it serious consideration. I have tried to pre-
serve the best features of the first edition and made changes based on feedback from 
many CS2 teachers and users of the previous edition. 

Approach As an illustration of the approach that has worked well in my classes, 
take a look at Chapter 7 on stacks. Some examples of real-world phenomena that are 
best modeled by a LIFO structure lead to abstracting from these examples the com-
mon features, yielding a stack ADT. But ADTs must be implemented with data struc-
tures provided in some language, and so we build a stack class. (Incidentally, while 
we are doing this in class, my students are working on building a queue class in their 
lab period.) 

1 Publisher’s Note: Professor Nyhoff’s prowess as a teacher was acknowledged when he received the 
Presidential Exemplary Teaching Award for the academic year 2002–03 after being recommended by 
Calvin College colleagues along with current and former students. 

iii 



iv Preface 

NyhPreff.fm Page iv Friday, June 18, 2004 12:14 PM 

Once this new Stack type has been created and tested, we use it to solve one or 
more of the original problems and usually at least one new application. I also believe 
in starting with a simple implementation—e.g., using a static C-style array—and get a 
working version. Then, emphasizing the need to preserve the public interface of an 
ADT, we refine it—e.g., use a dynamic array so the user can specify the stack’s capac-
ity; then use a linked list so an a priori capacity specification is not needed; and 
finally, convert it to a template so the ADT can be used with arbitrary type elements. 
This spiral/successive-refinement approach demonstrates clearly the “abstract” part 
of an ADT—that it is independent of the implementation. 

I also cover many of the containers provided in the C++ Standard Template 
Library (STL), because several of them such as vector are very useful and powerful, 
and it does not make sense to reinvent the wheel by building our own versions. Oth-
ers, however, such as STL’s stacks and queues, are adapters of other containers and 
waste a lot of the horsepower of these inner containers. For these it makes sense to 
build our own “lean and mean” implementations, using lower-level data structures 
such as arrays and linked lists. It also provides practice for students with building cus-
tomized container types for problems for which none of the standard containers is 
really suitable. 

How to Use this Book There is considerable flexibility in the kind of course that 
can be taught from this text. In particular, many of the topics can be covered in an 
order different from that used in the text. The diagram on the next page shows the 
major dependencies of the various chapters. An arrow running from one box to 
another indicates a significant dependence of the material in the second box on that 
in the first; for example, the material in Chapter 9 draws on the material in both 
Chapters 7 and 8. A dashed arrow indicates that the material in the first box may 
have been covered in a first course and might be omitted or assigned for review. 
Boxes not connected are, for the most part, independent of each other (for example, 
Chapters 7 and 8). 

To Students (and Other Users of this Text) 

You probably don’t read prefaces of most textbooks unless your instructor assigns 
them and then perhaps only if you will be quizzed on it. For this text, however, you 
should at least read the section “Overview of the Text,” because it is intended to pro-
vide an orientation to what the book is about, what its major themes are, and how 
they fit together. And you should also look through the Table of Contents for this 
same reason. 

The topics covered in this text are typical of those in a course that follows a first 
course in programming. The aim of these two courses together is to provide you with 
a solid introduction to computing. You develop the skills to write substantial pro-
grams for solving non-trivial problems but are also introduced to important concepts 
and techniques in computing. These two courses should provide you with a solid 
base for using the computer as a problem-solving tool in whatever areas of study you 
pursue. If you do more coursework in computer science, it is important that you 
work hard at mastering the material of this second course, because the topics cov-
ered are fundamental to several upper-level courses. In fact, at many colleges and 
universities, this course is a prerequisite for intermediate and advanced courses in 
computer science. 



Preface v 

Software development 

and implementations 

programming and OOP 
and reviews classes 

Lists 

Stacks Queues 

standard containers 

More linked lists 

Binary trees & hash tables 

Graphs & digraphs 

Recursion & 
algorithm analysis 

Sorting 

and implementations 

basic C�� types 

I/O and string classes 

NyhPreff.fm Page v Friday, June 18, 2004 12:14 PM 

Chap. 1 

Sec. 2.1 
A first look at ADTs, 

Sec. 3.2–3.5 review arrays, 
pointers, dynamic allocation, 
structs, procedural programming 

Chap. 4 contrasts procedural 

Chap. 6 

Chap. 7 Chap. 8 

Chap. 9 
Templates & 

Chap. 11 

Chap. 12 

Chap. 15 
Trees 

Chap. 16 

Chap. 14 
OOP and ADTs 

(inheritance, et al) 

Chap. 10 

Chap. 13 

Sec. 3.1 
Data structures, ADTs, 

Sec. 2.2–2.5 review 

Chap. 5 looks at standard 

This text assumes that you have had an introduction to programming, prefera-
bly using C++ or Java. Appendix C (Basic C++) reviews the basic features of C++ 
that are typically covered in a first programming course, and Appendix D (Other 
C++ Features) covers some features that are more advanced. Students in my classes 



12.2

vi Preface 

NyhPreff.fm Page vi Friday, June 18, 2004 12:14 PM 

have found these two appendixes to be handy references when they need to look up 
something about the C++ language. If your first course was in Java, you should 
study Appendix E (From Java to C++), which provides a comparison of the main 
features of the two languages. It has been used successfully in my classes to get stu-
dents with a background in Java up to speed with the basic features of C++ in the 
first couple of weeks. 

As you read through the text, you should by all means use the Quick Quizzes to 
check your understanding of some of the main ideas from the reading. The answers 
to these can be found in Appendix F. These self-test quizzes are usually followed by 
sets of exercises, some of which your instructor may assign for homework. You are 
encouraged to try some of these on your own, even if it isn’t required, because it will 
increase your mastery of the material. The same is true of the programming problems 
at the end of each chapter. 

All of the C++ code in the program examples of this text can be downloaded 
from the author’s website for the book: http://cs.calvin.edu/books/c++/ds. 
So if you see a particular function in an example that you can use in a program or 
class library you are writing, feel free to download and use it—unless your instructor 
forbids it, of course! 

Hopefully, you will enjoy reading and learning from the text. Several hundreds 
of my students have used earlier versions of this text with very few complaints. But 
they do enjoy finding errors and informing me about them! I hope that you too will 
report any that you run across; they are there, in spite of long hours of “debugging” 
the manuscript before it goes into print. I can’t offer you bonus points on your 
course grade for finding them, but I will recognize your contribution to the improve-
ment of the book by adding your name to the list of other error detectors on the 
book’s website. 

Overview of the Text 

As the title suggests, there are three main themes in this text: 

1. Abstract data types (ADTs) 
2. Data structures 
3. Problem solving 

Abstract data types consist of collections of data elements together with basic opera-
tions on the data. Nearly every chapter of this text deals with some aspect of ADTs— 
defining an ADT such as a list, stack, or queue; studying some application of it; 
implementing the ADT or studying its implementation in some library; looking at 
ways to improve the implementation. 

Classes play a key role in implementing ADTs because they make it possible to 
encapsulate the data and the operations so that objects not only store data but also 
have built-in operations. This is one of the key properties of object-oriented pro-
gramming and is emphasized from the beginning. Data structures provided in C++ 
(such as arrays) or that can be built in C++ (e.g., linked lists) play important roles in 
providing structures to store the data elements of an ADT. These key data structures 
along with the up-to-date and powerful containers from the Standard Template 
Library (STL) are studied for this purpose. 



12.3

NyhPreff.fm Page vii Friday, June 18, 2004 12:14 PM 

Preface vii 

The third theme is problem solving. Chapter 1 describes some of the software 
engineering methodologies used to develop a solution to a problem, and the text 
emphasizes the use of object-oriented design (OOD) in the design phase. This is a 
natural continuation of the object-centered design (OCD) approach used in C++: An 
Introduction to Computing and which is similar to that used in many other introduc-
tory programming texts. The text has many examples, including several case studies, 
that show the roles that ADTs play in problem solving. 

Implementing the operations of an ADT involves designing algorithms to carry 
out the operations. This means that the study of algorithms must also play a signifi-
cant role in a study of ADTs, and this text has many examples of algorithms. These 
include searching and sorting algorithms along with the powerful algorithms from 
the Standard Template Library (STL). Analyzing the efficiency of algorithms is also 
introduced and illustrated, thus providing a first look at important tools used in later 
courses in computer science. 

Algorithms must be implemented in a programming language. Thus this text 
includes some coverage of C++, especially the more advanced topics not usually cov-
ered in a first course and which students need to learn. These include recursion, func-
tion and class templates, inheritance, and polymorphism. The C++ features presented 
conform to the official standard for C++. In addition, some of the C-style topics 
appropriate in a data structures course are included for several reasons: many stu-
dents will get jobs as C programmers; many libraries and operating system utilities 
are written in C or C-style languages; data structures provided in C are usually imple-
mented very efficiently and they are often used to implement some of the more mod-
ern standard data types. 

Another feature of this text is that it continues the portrayal of the discipline 
of computer science begun in C++: An Introduction to Computing by including 
examples and exercises to introduce various areas of computer science and 
thereby provide a foundation for further studies in computer science. The topics 
include: 

■ Descriptions of software development methods 

■ Introduction to data encryption schemes (DES and public key) 

■ Data compression using Huffman codes 

■ Doubly-linked lists and large integer arithmetic 

■ Random number generation and simulation 

■ Lexical analysis and parsing 

■ Postfix notation and generation of machine code 

■ Simple systems concepts such as input/output buffers, parameter-passing 
mechanisms, address translation, and memory management 

New and Improved Features 

■ Revised first chapter: 

● Introduces other software engineering methods besides the waterfall 
model. 

● Introduces UML 



12.4

NyhPreff.fm Page viii Friday, June 18, 2004 12:14 PM 

viii Preface 

● Describes top-down design and object-oriented design in detail 
● Relates some of the “horror stories” of bad software design 

■ More use of OOD and OOP in examples 

■ Uniform method of displaying ADT specifications in a UML-style diagram 

■ Improved pseudocode in algorithms 

■ Naming conventions that are consistent with common recommendations 

■ Complete source code for nearly all of the ADTs 

■ Many improvements to diagrams and several new diagrams 

■ Expanded and improved discussion of C++’s I/O and string classes 
(Chapter 5)

■ Earlier introduction to pointers and dynamic allocation, including an 
expanded discussion of the new operator (Chapters 2 and 3) 

■ Earlier presentation of lists (Chapter 6)—before stacks and queues—and 
revised to include array-based (static and dynamic) list classes, an introduc-
tion to linked lists, and more standard symbols in diagrams 

■ Array-based and linked-list implementations of stacks (Chapter 7) 

■ Expanded treatment of queues, including array-based and linked-list imple-
mentations, and a revised simulation case study (Chapter 8) 

■ New chapter on searching, including modified and expanded treatment of 
binary search trees and hash tables (Chapter 12) 

■ Added discussion of heaps, priority queues, and radix sort (Chapter 13) 

■ Revised chapter on inheritance (Chapter 14) 

■ Chapter objectives and end-of-chapter summaries 

■ Several case studies 

■ A new appendix From Java to C++ for those making a transition from Java 
to C++ 

Other Key Features 

■ Self-test Quick Quizzes with answers in back of text 

■ Large number of written exercises and programming problems 

■ Chapter notes, programming pointers, and ADT tips at the end of each chapter 

■ More conformance to the C++ standard than many other texts 

■ Solid introduction to the C++ Standard Template Library 

■ A review of C++ in the appendixes for handy reference (Appendices C 
and D) 

■ Boxed displays to set off important concepts 

■ A new design that makes the text more readable and attractive 

■ Effective use of color to highlight important features and not simply for 
decoration 



12.5

12.6

NyhPreff.fm Page ix Friday, June 18, 2004 12:14 PM 

Preface ix 

■ Icons that point out key features, special things to note, and warnings: 

Watch out! Note (important 
(potential pitfall) feature or concept) 

ADT Algorithm 

Designing/building an Using an ADT 
implementation of an ADT 

Website (more material Chapter notes 
about a topic) 

Programming problemsProgramming pointers 

Quick quiz Exercises 

Supplementary Materials 

A number of supplementary materials are available for this text: 

■ An online solutions manual containing solutions for all of the written exer-
cises. Access to these solutions is available to those who adopt this text for 
use in a course. Solutions to many of the programming problems are also 
available to them upon request from the author. 

■ Author website (http://cs.calvin.edu/books/ds) and Prentice Hall 
website (http://www.prenhall.com/nyhoff) contain the following: 

● Downloadable source code for text examples 
● Solutions to case studies including source code 
● PowerPoint slides 
● Other supplementary material 

■ A lab manual with lab exercises and projects (sold separately and also avail-
able as a value pack option). It is coordinated with the presentation in the 
text, reinforcing and expanding what students read there and hear in class. 

■ Also available are software value pack options that include: 

● Microsoft Visual C++ 
● Metrowerks CodeWarrior Learning Edition 

Acknowledgments 

I express my sincere appreciation to all who helped in any way in the preparation of 
this text. My gratitude for friendship, perceptive suggestions and directions, and 
unflagging support and encouragement goes to Alan Apt, a publisher highly respected 
throughout the publishing and academic communities, and to my editor Toni Holm; 
their friendship over the past several years has made textbook writing for Prentice 
Hall an enjoyable experience. I must also thank art director Heather Scott, production 



x Preface 

NyhPreff.fm Page x Friday, June 18, 2004 12:14 PM 

editors Chirag Thakkar and Irwin Zucker, and all the others who did such a fantastic 
job of designing this attractive book and actually getting it into print. Their attention 
to details has compensated for my lack thereof and their cooperation and kind words 
were much appreciated. I also appreciate the management of reviews and other details 
handled by Jake Warde. And I appreciate the many valuable observations and recom-
mendations by the following reviewers of the manuscript; they have strengthened the 
presentation significantly: 

Ping Chen (University of Houston)
Joe Derrick (Radford University)
Eamon Doherty (Farleigh Dickinson University)
James Durbano (University of Delaware)
Eduardo Fernandez (Florida Atlantic University)
Christopher Fox (James Madison University)
Mahmood Haghighi (Bradley University)
Oge Marques (Florida Atlantic)
Mark McCullen (Michigan State University)
William McQuain (Virginia Tech)
Jim Miller (Kansas University)
Jim Richards (Bemidji State University)
Robert Schneider (University of Bridgewater)
Joseph Shinnerl (University of California, Los Angeles)
Michael Stiber (University of Washington)
Al Verbanec (Pennsylvania State University)
John M. Weiss (South Dakota School of Mines and Technology)
Rick Zaccone (Bucknell University)

And, of course, I must once again pay homage to my wife Shar and to our children 
and grandchildren—Jeff, Dawn, Rebecca, Megan, and Sara; Jim; Greg, Julie, Joshua 
and Derek; Tom, Joan, Abigail, Micah, and Lucas—for their love and understanding 
through all the times that their needs and wants were slighted by my busyness. Above 
all, I give thanks to God for giving me the opportunity, ability, and stamina to pre-
pare this text. 

Larry Nyhoff 


	Untitled



