| X. Binary Trees (Chapter 10)

A. Introduction: Searching alinked list.

1. Linear Search
/* To linear search alist for a particular Item */
1. SetLoc=0;
2. Repeat the following:
a. If Loc >=length of list
Return —1 to indicate Item not found.
b. If list element at location Loc is Item
Return Loc as location of Item
c. Increment Loc by 1.

Linear search can be used for lists stored in an array as well asfor linked lists. (It'sthe
method used inthef i nd algorithm in STL.) For alist of length n, its average search
timewill be O(n).

2. Binary Search
If alist isordered, it can be searched more efficiently using binary search:

[* To binary search an ordered list for a particular Item */

1. Set First = 0 and Last = Length of List — 1.
2. Repeat the following:

a. If First > Last
Return —1 to indicate Item not found.
b. Find the middle element in the sublist from locations First through Last
and its location Loc.
c. If Item < thelist element at Loc
Set Last = Loc —1. // Search first half of list
Elseif Item > thelist element at Loc
Set First = Loc + 1. // Search last half of list
Else
Return Loc as location of Item

Since the size of the list being searched is reduced by approximately 1/2 on each pass
through the loop, the number of times the loop will be executed is O(logzn).

It would seem therefore that binary search is much more efficient than linear search.
Thisistruefor lists stored in arrays in which step 2b can be done simply by calculating
Loc = (First + Last) / 2 and Array[Loc] isthe middle list element.

For linked lists, however, binary search is not practical, because we only have direct
access to the first node, and locating any other node requires traversing the list until
that node islocated. Thus step 2b requires:
i. Mid = (First + Last) / 2
1. Set LocPtr = First;
lii. For Loc = Firstto Mid - 1
Set LocPtr = Next part of node pointed to by LocPtr.
Iv. Locisthelocation of the middle node and the Data part of the node
pointed to LocPtr isthe middle list element.

The traversal required in step iii to locate the middle node clearly negates the efficiency
of binary search for array-based lists, the computing time becomes O(n) instead of

O(logsn).

However, perhaps we could modify the linked structure to make a binary search
feasible. What would we need?

Direct access to the middle node:

22 33 4466 77 88

and from it to the middle of the first half and to the middle of the second half,

22446688

and so on:;

Or if stretch out the links to give it atree-like shape:

©
(] ()
® O ©® &

That is, useabinary search tree (BST).

B. Binary Search Trees
1. Definition and Terminology:
A tree consists of afinite set of elements called nodes (or vertices) and afinite set of
directed arcs that connect pairs of nodes. If the treeis not empty, then one of the
nodes, called the root, has no incoming arcs, but every other node in the tree can be
reached from the root by a unique path (a sequence of consecutive arcs).

A leaf isanodewith no outgoing arcs.
Nodes directly accessible (using one arc) from a node are called the children of that
node, which is called the parent of these children; these nodes are siblings of each

other.
root
W_
(2) () -
° ° Q 4 children of this parent
siblings of each other
k leaves
2. Examples
Gametrees
Morse code trees
Parse trees

CTRETTZOTMmoON® >
|
Xg<oHdvnr0ovoezZZ
!
N
|

3. Def: A binary treeisatreein which each node has at most 2 children.

4. Array-Based I|mplementation:
An array can be used to store some binary trees. In this scheme, we just number the
nodes level by level, from left to right,

i | 0| 1] 2|3 6 | ...
ThIf O | M| T | C| E| P U]..

However, unless each level of thetreeisfull so there are no "dangling limbs," there
can be much wasted spacein the array. For example,

contains the same characters as before but requires 58 array positions for storage:

| o] 1] 2| .| 6
TT €l Cl M| .| U

| .| 13| .| 28] ..| 57
| ..l T ... P] .. O

5. Linked Implementation:
Use nodes of the form

dat a

left{ , | \|right

¥

Left child Right child
and maintain a pointer to the root.

a. Example:
r oot

I

b. C++ Implementation:
tenpl ate <typenane Bi nTreeEl enent >

cl ass BinaryTree

public:
/1 ... BinaryTree function nmenbers
privat e:
cl ass Bi nNode /1l a binary tree node
{
public:

Bi nTr eeEl enent dat a;
Bi nNode * |eft,
* right;

/1 ... BinNode menber functions
b
t ypedef Bi nNode * Bi nNodePointer; // an easy-to-read alias type
/1 BinaryTree data nenbers
Bi nNodePoi nt er root; /'l pointer to the root node

5. Def. A Binary Search Tree (BST) isabinary tree in which the value in each node
Is greater than all valuesin its left subtree and less than all valuesin its right subtree.

a. We can "binary search" aBST:

1. Set pointer locPtr = root.
2. Repesat the following::
If locPtr is null
Return False
If Value < locPtr->Data
locPtr = locPtr->L eft
Elseif Value > locPtr->Data
locPtr = locPtr->Right
Else
Return True

Search time: O(logzn) if treeis balanced.

b. What about traversing a binary tree?

Thisis most easily done recursively, viewing abinary tree as arecursive data
structure:

Recursive definition of a binary tree:
A binary tree either:
1. isempty - ¥a¥a¥a¥a¥aYaYa¥aYaYa¥aYaYa¥aYaYa¥Ya Anchor
or
Ii. consists of anode called the root, which has \
pointers to two digjoint binary subtrees | - % Inductive step
called the left subtree and theright subtree. /

Now, for traversal, consider the three operations:

V: Visit anode.
L: (Recursively) traverse the left subtree of a node.
R: (Recursively) traverse the right subtree of a node.

We can do these in six different orders: LVR, VLR, LRV, VRL, RVL, and RLV

For example, LVR gives the following traversal algorithm:

If the binary tree is empty then I/ anchor
Do nothing.
Else do the following: // inductive step

L: Call Traverseto traverse the left subtree.
V: Visit the root.
R: Call Traverseto traverse theright subtree.

As amember functionin aBi nar yTr ee class:

void Inorder() { Traverse(root); }

voi d Traver se(Bi nNodePoi nter r)

{if (r '=0)
{Traverse(r->left); [/ L
Process (r->data); // V
Traverse(r->right); // R

}
Rearranging the steps L, V, and R gives the other traversals.
Example:

X
LVR: 58, 60, 65, 75, 80, 92
G D VLR: 75, 60, 58, 65, 80, 92
LRV: 58, 65, 60, 92, 80, 75
D) 32

Thefirst three orders, in which the left subtree is traversed before the right, are the
most important of the six traversals and are commonly called by other names:

LVR « Inorder
VLR « Preorder
LRV « Postorder

Note: Inorder traversal of a BST visits the nodes in ascending order.

To see why these names are appropriate, recall expression trees, binary trees used to
represent the arithmetic expressionslikeA —B * C + D:

Inorder traversal ® infix expression: A-B*C+D
Preorder traversal ® prefix expression: +-A*BCD
Postorder traversal ® postfix expression. A B C *—- D +

c. So how do weinsertin abinary tree so it growsinto aBST?

Modify the search algorithm so that a pointer parentPtr trails locPtr down the tree,
keeping track of the parent of each node being checked:

1. Initialize pointerslocPtr = root, parentPtr = NULL.
2. WhilelocPtr 1 NULL.:
a. parentPtr = locPtr
b. If value< locPtr->Data
locPtr = locPtr->Left
Elseif value > locPtr->Data
locPtr = locPtr->Right
Else
value is aready in the tree; return a found indicator.
3. Get a new node pointed to by newPtr, put the value in its data part,
and set | eft and right to null.
4. if parentPtr = NULL /] empty tree
Set root = newptr.
Else if value < parentPtr->data
Set parentPtr->left = newPtr.
Else
Set parentPtr->right = newPtr.

Examples:

Insert in the order given: Insert in the order given: Insert in the order given:
M,O, T,H,E,R T,H E,R,M,O E,H,M,O,R, T

> |

d. What about deleting anode aBST?
Casel. A leaf, and Case2: 1 child Easy — just reset link from parent

Case 3: 2 children: 1. Replace node with inorder successor X.
2. Delete X (which has 0 or 1 child)

Some Specia Kinds of Trees:
AVL Trees Threaded Binary Search Trees
Tries B-Trees
Huffman Code Trees (data compression)

