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IX.  Binary Trees (Chapter 10)

A. Introduction:  Searching a linked list.

1.  Linear Search
/* To linear search a list for a particular Item */
1.  Set Loc = 0;
2.  Repeat the following:

a.  If Loc >= length of list
 Return –1 to indicate Item not found.

b.  If list element at location Loc is Item
Return Loc as location of Item

c.  Increment Loc by 1.

Linear search can be used for lists stored in an array as well as for linked lists.  (It's the
method used in the find algorithm in STL.)  For a list of length n, its average search
time will be O(n).

2.  Binary Search

If a list is ordered, it can be searched more efficiently using binary search:

/* To binary search an ordered list for a particular Item */
1. Set First = 0 and Last = Length of List – 1.
2.  Repeat the following:

a.  If First > Last
 Return –1 to indicate Item not found.

b. Find the middle element in the sublist from locations First through Last
 and its location Loc.

c. If Item < the list element at Loc
Set Last = Loc – 1.  // Search first half of list

    Else if Item > the list element at Loc
Set First = Loc + 1.  // Search last half of list

Else
Return Loc as location of Item

Since the size of the list being searched is reduced by approximately 1/2 on each pass
through the loop, the number of times the loop will be executed is O(log2n).

It would seem therefore that binary search is much more efficient than linear search.
This is true for lists stored in arrays in which step 2b can be done simply by calculating
Loc = (First + Last) / 2 and Array[Loc] is the middle list element.
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For linked lists, however, binary search is not practical, because we only have direct
access to the first node, and locating any other node requires traversing the list until
that node is located.  Thus step 2b requires:

  i.  Mid = (First + Last) / 2
 ii.  Set LocPtr = First;
iii.  For Loc = First to Mid - 1

Set LocPtr = Next part of node pointed to by LocPtr.
 iv.  Loc is the location of the middle node and the Data part of the node

pointed to LocPtr is the middle list element.

The traversal required in step iii to locate the middle node clearly negates the efficiency
of binary search for array-based lists; the computing time becomes O(n) instead of
O(log2n).

However, perhaps we could modify the linked structure to make a binary search
feasible.  What would we need?

Direct access to the middle node:

22      33      44      55      66      77      88

and from it to the middle of the first half and to the middle of the second half,

22      33      44      55      66      77      88

and so on:

22      33      44      55      66      77      88

Or if stretch out the links to give it a tree-like shape:

 

55

77

88664422

33

That is, use a binary search tree (BST).
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B. Binary Search Trees
1. Definition and Terminology:

A tree consists of a finite set of elements called nodes (or vertices) and a finite set of
directed arcs that connect pairs of nodes.  If the tree is not empty, then one of the
nodes, called the root , has no incoming arcs, but every other node in the tree can be
reached from the root by a unique path (a sequence of consecutive arcs).

A leaf  is a node with no outgoing arcs.
Nodes directly accessible (using one arc) from a node are called the children of that
node, which is called the parent of these children; these nodes are siblings of each
other.

children of this parent
siblings of each other

root

leaves

2. Examples
Game trees
Morse code trees
Parse trees
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3. Def: A binary tree is a tree in which each node has at most 2 children.

4. Array-Based Implementation:
An array can be used to store some binary trees.  In this scheme, we just number the
nodes level by level, from left to right,

0

1 2

3 4 5 6

O

T

UPEC

M

and store node #0 in array location 0, node #1 in array location 1, and so on:

i 0 1 2 3 4 5 6 . . .
T [i ] O M T C E P U . . .

However, unless each level of the tree is full so there are no "dangling limbs," there
can be much wasted space in the array.    For example,

contains the same characters as before but requires 58 array positions for storage:

i 0 1 2 ... 6 ... 13 ... 28 ... 57
T [i ] E C M ... U ... T ... P ... O
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5. Linked Implementation:
    Use nodes of the form

data

left right

Left child Right child

    and maintain a pointer to the root.

a. Example:

 

75

60

58

80

65 92

root

b. C++ Implementation:

template <typename BinTreeElement>

class BinaryTree
{
 public:
  // ... BinaryTree function members

 private:
  class BinNode                      // a binary tree node
  {
   public:
     BinTreeElement data;
     BinNode * left,
             * right;

// ... BinNode member functions
  };

  typedef BinNode * BinNodePointer;  // an easy-to-read alias type

  // BinaryTree data members

  BinNodePointer root;               // pointer to the root node

};
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5. Def.  A Binary Search Tree (BST) is a binary tree in which the value in each node
is greater than all values in its left subtree and less than all values in its right subtree.

a. We can "binary search" a BST:

1.  Set pointer locPtr  = root.
2.  Repeat the following::

If locPtr is null
Return False

If Value <  locPtr->Data
locPtr = locPtr->Left

Else if Value > locPtr->Data
locPtr = locPtr->Right

Else
Return True

Search time:   O(log2n) if tree is balanced.

b.  What about traversing a binary tree?

This is most easily done recursively, viewing a binary tree as a recursive data
structure:

Recursive definition of a binary tree:
A binary tree either:

  i.  is empty  ← Anchor
or

ii. consists of a node called the root, which has \
    pointers to two disjoint binary subtrees  | ← Inductive step

called the left subtree and the right subtree. /

Now, for traversal, consider the three operations:

V:  Visit a node.
L:  (Recursively) traverse the left subtree of a node.
R:  (Recursively) traverse the right subtree of a node.

We can do these in six different orders:  LVR, VLR, LRV, VRL, RVL, and RLV
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For example, LVR gives the following traversal algorithm:

If the binary tree is empty then // anchor
Do nothing.

Else do the following: // inductive step
L:  Call Traverse to traverse the left subtree.
V:  Visit the root.
R:  Call Traverse to traverse the right subtree.

As a member function in a BinaryTree class:

void Inorder() { Traverse(root); }

void Traverse(BinNodePointer r)
{ if (r != 0)
    {Traverse(r->left);  // L
     Process (r->data);  // V
     Traverse(r->right); // R
}

Rearranging the steps L, V, and R gives the other traversals.

Example:

LVR: 58, 60, 65, 75, 80, 92
VLR: 75, 60, 58, 65, 80, 92
LRV: 58, 65, 60, 92, 80, 75

The first three orders, in which the left subtree is traversed before the right, are the
most important of the six traversals and are commonly called by other names:

LVR ↔ Inorder
VLR ↔ Preorder
LRV ↔ Postorder

Note:  Inorder traversal of a BST visits the nodes in ascending order.
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To see why these names are appropriate, recall expression trees, binary trees used to
represent the arithmetic expressions like A  – B  * C  + D:

Inorder  traversal → infix  expression:     A  – B  *  C  + D
Preorder  traversal → prefix  expression:  +  – A  *  B  C  D
Postorder  traversal → postfix  expression:  A  B  C  * –  D  +

c.  So how do we insert in a binary tree so it grows into a BST?

Modify the search algorithm so that a pointer parentPtr trails locPtr down the tree,
keeping track of the parent of each node being checked:

1.  Initialize pointers locPtr  = root, parentPtr = NULL.
2.  While locPtr ≠ NULL:

a.  parentPtr = locPtr
b.  If value <  locPtr->Data

locPtr = locPtr->Left
     Else if value > locPtr->Data

locPtr = locPtr->Right
Else

value  is already in the tree; return a found indicator.
3. Get a new node pointed to by newPtr, put the value in its data part,

and set left and right to null.
4.  if parentPtr = NULL // empty tree

Set root = newptr.
Else if value < parentPtr->data

Set parentPtr->left = newPtr.
Else

Set parentPtr->right = newPtr.
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Examples:

Insert in the order given:    Insert in the order given: Insert in the order given:
M, O, T, H, E, R T, H, E, R, M, O E, H, M, O, R, T

M

O

T

H

E

R

T

O

H

E

M

R

E

H

M

O

R

T

d.  What about deleting a node a BST?
Case 1:   A leaf,  and Case 2:  1 child Easy — just reset link from parent

Case 3:   2 children:  1. Replace node with inorder successor X.
2. Delete X (which has 0 or 1 child)

Some Special Kinds of Trees:
AVL Trees Threaded Binary Search Trees
Tries B-Trees
Huffman Code Trees   (data compression)


