VIIl. Run-Time Arrays—Intro. to Pointers (88.4 & 8.5)

A. Introduction to Pointers
For declarations like

doubl e doubl eVar;
char charvVar = "A";
int intVar = 1234;

the compiler constructs the object being declared (i nt Var , doubl eVar, and char Var),
which means that it:

1. Allocates memory needed for values of that type
2. Associates the object's name with that memory
3. Initializes that memory

For example:

0x1220 <— i ntVar

0x1221
0x1222
0x1223

I 0x1224 <— char Var

0x1225 <— doubl eVar

0x1226
0x1227
0x1228
0x1229
0x122a
0x122b
0x122c

1. The Address-of Operator (&)

We have seen (Lab 1) that a variable's address can be determined by using the addr ess-of
operator (&):

&variable is the address of variable

Example: For the scenario described above:
Values of &i nt Var, &ch_ar Var, and &dgubl eVar

0x1220, 0x1224, and 0x1225

2. Pointer Variables

a. To make addresses more useful, C++ provides pointer variables.

Definition: A pointer variable (or ssimply pointer) isavariable whose valueis
amemory address.

b. Declarations;

Type * pointerVariable

declares avariable named pointerVariable that can storethe address of an object
of type Type.

Example:

#include <| ostreanp
usi ng nanespace std;

int main()
int i =11, | = 22;
double d = 3.3, e 4. 4;
Il
int * iptr, * jptr; I
double * dptr, * eptr; [/
iptr = & ; /1 val ue
jptr = & ; /1 val ue
dptr = &d; /'l val ue
eptr = &e; /'l val ue
cout << "& =" << (void*)iptr <<
<< "& =" << (void¥)jptr <<
<< "& =" << (void*)dptr <<
<< "& =" << (void¥)eptr <<
}
Output produced:
& = Ox7fffb7f4
& = Ox7fffb7f0
&1 = Ox7fffb7e8
& = Ox7fffb7e0

3. Dereferencing Operator

poi nter variables that:
store addresses of

i nts)

store addresses of doubl es)

of iptr
of jptr

of dptr
of eptr

endl
endl
end|
endl ;

'S
K
'S
IS

addr ess

of

addr ess

of

addr ess

of

addr ess

of

|
|
d
e

We have also seen that the dereferencing (or indirection) operator * can be used to accessa

value stored in alocation. Thus for an expression of the form

*pointerVariable|

the value produced isnot the address stored in pointerVariable,
but isinstead the value stored in memory at that address.

Example:
Vaueof dptr: Ox7fffb7e8
Val ue of *dptr: 3.3

dptrlox7fffb7e8 d 3.3 Ox7fffb7e8

*dptr

We say dpt r points to that memory location (whose address is Ox7fffb7e8).
Suppose we replace the preceding output statements by: Output produced will be:

cout << "j =" << *iptr << endl I =11
<< "] =" << *jptr << endl j = 22
<< "d =" << *dptr << endl d =3.3
<< "e =" << *eptr << endl; e = 4.4

4. A Note about Reference Parameters

Recall the C++ function to exchange the values of two i nt variables:
void Swap(int & A, int & B)
} int Tenp = AL A=B, B = Tenp;

The values of two i nt variablesx and y can be exchanged with the call:
Swap(x,y);

The first C++ compilers were just preprocessors that read a C++ program, produced

functionally equivalent C code, and ran it through the C compiler. But C has no reference
parameters. How were they handled?

Translate the function to
void Swap(int * A int * B)
{
int Tenp = *A, *A = *B;, *B = Tenp;

}
and the preceding call to
Swap(&, &) ;

This indicates how the call-by-reference parameter mechanism works:

® A reference parameter is a variable containing the addr ess of its argument
(i.e.,, apointer variable) and that is automatically der efer enced when used.

6. Anonymous Variables

a. Definition: A variableisa memory location.
A named variable has a name associated with its memory location,
so that this memory location can be accessed conveniently.

An anonymous variable has no name associated with its memory location,
but if the addr ess of that memory location is stored in apointer
variable, then the variable can be accessed indirectly using the

pointer.

b. Named variables are created using a normal variable declaration. For example, in the
preceding example, the declaration

int | = 22;

I. constructed an integer (4-byte) variable at memory address Ox7fffb7f4 and initialized
those 4 bytes to the value 22; and

Ii. associated the name | with that address, so that all subsequent usesof j refer to
address Ox7fffb7f4; the statement

cout << j << endl;
will display the 4-byte value (22) at address Ox7fffb7f4.

c. Anonymous variables are created using the new oper ator, whose formis:

new Type

When executed, this expression:
I. allocates a block of memory big enough for an object of type Type,
and
ii. returnsthe starting address of that block of memory.

Example:

#i ncl ude <i ostreanr
usi ng nanespace std;

i nt main()
double * dptr,
* eptr;
Sample run:
dptr = new doubl e;
eptr = new doubl e; Enter two nunbers: 2.2 3.3

2.2 + 3.3 =5.5

cout << "Enter two nunbers: ";
cin >> *dptr >> *eptr;
cout << *dptr << " + " << *eptr

<< " =" << *dptr + *eptr << endl;

The program uses the new operator to allocate two anonymous variables whose
addresses are stored in pointer variablesdpt r and ept r:

double * dptr, * eptr;

dptr = new doubl e;
eptr = new doubl e;

Note 1: We could have performed these allocations as initializations in the declarations
of dptr and ept r:

doubl e * dptr
* eptr

new doubl e,
new doubl e:

Note 2: newmust be used each time a memory allocation is needed. For example, in
the assignment
dptr = eptr = new doubl e;
eptr = new doubl e allocates memory for adouble value and assigns its

addresstoeptr, but dptr = eptr simply assignsthissame addressto
dpt r (and does not allocate new memory.)

The program then inputs two numbers, storing them in these anonymous variables by
dereferencing dpt r and ept r in aninput statement:

cout << "Enter two nunbers: ";
cin >> *dptr >> *eptr;

It then outputs the two numbers and their sum:

cout << *dptr << " + " << *eptr
<< " =" << *dptr + *eptr << endl;

by dereferencing the pointer variables.

The expression *dptr + *eptr computes the sum of these anonymous variables. If
we had wished to store this sum in a third anonymous variable, we could have written:

double * fptr = new doubl e;

*fptr = *dptr + *eptr;
cout << *fptr << endl;

Note: It isan error to attempt to allocate the wrong type of memory block to
a pointer variable; for example,
doubl e dptr = new int; Il error
produces a compiler error.

7. Memory Allocation/Deallocation

newreceives its memory allocation from a pool of available = .

. un-Time
memory (called the heap or free store). It isusually located Stack
between a program and its run-time stack: The run-time stack
grows each time afunction is called, so it is possible for it to
overun the heap (if mai n() callsafunction that calls afunction

that callsafunction ...) Itisalso possible for the heap to overun Heap

the run-time stack (if a program performs lots of new

operations). Program
statements

If a program executes a new operation and the heap has been exhausted, then new returns
the value O (called the null address or null pointer). It iscommon to picture anull
pointer variable using the electrical engineering ground symbol:

dptr ——|-|-|

It isagood ideato check whether a pointer variable has a null value before attempting to
dereference it because an attempt to dereference a null (or uninitialized or void) pointer
variable produces a segmentation fault

doubl e *dptr = new doubl e;
I f (dptr == 0)

cerr << "\n*** No nore nenory!\n";
exit(-1);

When many such checks must be made, an assertion is probably more convenient:
assert (dptr '= 0);

The RTS grows each time afunction is called, but it shrinks again when that function
terminates. What is needed is an analogous method to reclaim memory allocated by new, to
shrink the heap when an anonymous variable is no longer needed. Otherwise amemory
leak results.

For this, C++ providesthedel et e operation:

del ete pointerVariable

which deallocates the block of memory whose address is stored in poi nt er Vari abl e,
when it is no longer needed.

B. Run-Time-Allocated Arrays

Container classeslike St ack and Queue that use arrays (as we know them) to store the
elements have one obvious deficiency:

Their capacities are fixed at compile time.

Thisis because arrays as we have used them up to now have their capacities fixed at compile
time. For example, the declaration

doubl e a[50];
declares an array with exactly 50 elements.
Thiskind of array is adequate if afixed-capacity array can be used to store all of the data sets

being processed. However, this often is not true because the sizes of the data setsvary. In this
case we must either:

— Make the array's capacity large enough to handle the biggest data set — an
obvious waste of memory for smaller data sets.

— Change the capacity in the array's declaration in the source program/library and
recompile.

It would be nice if the user could specify the capacity of the array/stack/queue at run time
and an array of that capacity would then be allocated and used. Thisis possiblein C++.

1. Allocating an Array During Run-Time

The operator new can be used in an expression of the form

new Type[N]

where N is an integer expression, to allocatean array with N elements, each of type
Type; it returns the base addr ess of that array.

01 2 3 4 . .. N-1
Oxttpitt 1 1 1 [| ||

Returned by new

This allocation occurs when this expression is executed, that is, at run-time, not at
compile-time. This means that the user can input a capacity, and the program can allocate
an array with exactly that many elements!

The address returned by newmust be assigned it to a pointer of type Type. Thusa
declaration of arun-time-allocated array is simply a pointer declaration:

Type * arrayPtr;

Example

I nt nunm tens;
doubl e dub[20]; /1 an ordinary conpile-tine array
doubl e *dubPtr; // a pointer to a (run-tine) array

cout << "How many nunbers do you have to process? ",
cin >> numtens;

dubPtr = new doubl e[nun t ens] ;

Note: Recall that for an ordinary array like dub, the value of the array name dub isthe
base address of the array. So, in a subscript expression like

dub[i] (sameasoperator[] (dub, i))

the subscript operator actually takes two operands. the base address of the array and
an integer index. since the pointer variable dubPt r also isthe base address of an
array, is can be used in the same manner as an array name:

dubPtr[i] (sameasoperator[](dubPtr, 1))
Example:
for (int 1 =0; i < numtens; |++)
cout << dubPtr[i] << endl;

2. Deadllocating a Run-Time Array

We can use the del ete operation in a statement of the form

del ete[] arrayPtr;

This returns the storage of the array pointed to by arrayPtr to the heap. Thisis
important because memory leaks involving arrays can result in considerable |oss
of memory asin:

for(;:)
.
int n;
cout << "Size of array (0 to stop): ";
cin >> n;
i f (n == 0) break;

doubl e * arrayPtr = new doubl e[n];
/| process arrayPtr

}

Each new allocation of memory to ar r ayPt r maroons the old memory block.

C. Run-Time-Allocation in Classes

Classes that use run-time allocated storage requirse some new members and modifications of
others:

1. Destructors: To "tear down" the storage structure and deallocate its memory.
2. Copy constructors: To make copies of objects (e.g., value parameters)
3. Assignment: To assign one storage structure to another.

We will illustrate these using our St ack class.

1. Data Members

We will use arun-time allocated array so that the user can specify the capacity of the stack
during run time. We simply change the declaration of the ny Ar r ay member to a pointer
and STACK CAPACI TY to avariable; to avoid confusion, we will use different names for
the data members.

[[***** RTStack. h *****
/* -- Docunentation as earlier (: Saving space :) --*/

#i f ndef RTSTACK
#def i ne RTSTACK

#i ncl ude <i ostrean»
usi ng nanespace std;

tenpl ate <cl ass StackEl enent >
cl ass Stack

[***** Function Menbers *****/

public:
/**;*; Eﬁta Menmber s*****/
private:
St ackEl ement * nyArrayPtr; // run-tinme allocated array to store el enents
int nyCapacity_, /'l capacity of stack
nyTop_; /'l top of stack
} .

#endi

-10-
2. The Class Constructor

We want to alow declarations such as

St ack<i nt> sl1, s2(n);
to construct s1 as a stack with some default capacity,
and construct s 2 as a stack with capacity n.

To permit both forms, we declare a constructor with a default argument:

[* --- dass constructor ---
Precondition: A stack has been defi ned.
Recei ve: | nt eger nunkl enents > 0; (default = 128)

Post condi ti on: The stack has been constructed as a stack with
capacity nungtl enents.

Stack(i nt nuntl enents = 128);
This constructor must really construct something (and not just initialize data members):

[1*** Definition of class constructor
tenpl ate <cl ass StackEl enent >
St ack<St ackEl emrent >: : St ack(i nt nunEl enment s)
{
assert (nuntl ements > 0); /'l check precondition
nyCapacity_ = nunkEl ements; // set stack capacity
/1 allocate array of this capacity
nyArrayPtr = new StackEl enent [nyCapacity];

if (nmyArrayPtr == 0) /'l check if nenory avail abl e
{
cerr << "*** |padequate nenory to allocate stack ***\n";
exit(-1);
/'l or assert(nyArrayPtr !'= 0);
nyTop_ = -1,

Now a program can include our RTSt ack header file and declare

cin >> num
St ack<doubl e> s1, s2(num;

s1 will be constructed as a stack with capacity 128 and s2 will be constructed as a stack
with capacity num

-11-
3. Other stack operations: empty, push, top, pop, output

The prototypes and definitions of enpt y() aswell as the prototypes of push(), t op(),
pop(), and oper at or <<() are the same as before (except for some name changes).
See pages 428-31

The definitions of push(), top(), pop(), and oper at or <<() require accessing the
elements of the array data member. Aswe have noted, the subscript operator [] can be
used in the same manner for run-time allocated arrays as for ordinary arrays, and thus
(except for name changes), the definitions of these functions are the same as before; for
example:

[1*** Definition of push()

tenpl ate <cl ass StackEl enent >
voi d Stack<St ackEl enent >: : push(const StackEl enent & val ue)

if (nmyTop_ < nyCapacity - 1)
{

++nyTop_;
myArrayPtr[nyTop_] = val ue;
[l or simply, nyArrayPtr[++nyTop_] = val ue;
el se
cerr << "*** Gtack is full -- can't add new val ue ***\n";

4. Class Destructor

For any class object obj we have used up to now, when obj isdeclared, the class
constructor iscalled to initialize obj . When the lifetime of obj isover, its storageis
reclaimed automatically because the location of the memory allocated is determined at
compile-time.

For objects created during run-time, however, anew problem arises. To illustrate,
consider a declaration:

St ack<doubl e> st (nunj;

The compiler knows the data members nyCapacity , nyTop _, and nyArrayPtr of st
so it can allocate memory for them:

St ny Capaci ty_|:|

myTop_[]

nyArrayPtr|:|

The array to store stack elementsis created by the constructor; so memory for it isn't
allocated until run-time:

St ny Capaci ty_|:|

myTop_[| 0 1 2 3 4 . .. num 1
myArrayPtr [H—>[T 1 [[|

When the lifetime of st ends, the memory allocated to nyCapacity , nyTop_, and
nyArrayPt r isautomatically reclaimed, but not for the run-time allocated array:

o 1 2 3 4 . .. num 1
LT T T 1 ||

We must add a destructor member function to the class to avoid this memory leak.

= Destructor'srole: Deallocate memory allocated at run-time (the opposite of the
constructor's role).

-12-

« At any point in a program where an object goes out of scope, the compiler inserts a call

to this destructor. That is:

|[When an object's lifetime is over, its destructor is called first. |

Form of destructor:

= Nameisthe class name preceded by atilde (~).

« |t has no arguments or return type

~Cl assName() |

For our St ack class, we use the del et e operation to deallocate the run-time array.

//***** R‘I’Stackh *k*k k%
/* --- O ass destructor ---
Precondition: The lifetinme of the Stack containing this
function shoul d end.
Postcondition: The run-tine array in the Stack contai ning
this function has been deall ocat ed.
~Stack();
/1l Follow ng class declaration
/] Definition of destructor
tenpl ate <cl ass StackEl enent >
St ack<St ackEl enent >: : ~St ack()

delete[] nyArrayPtr;

Supposest is

St rryCapacity_
nyTop_[2] 0 1 2 3 4
rTyArrayPtrE—Ha|b|c| | |

When st 'slifetimeis over, st . ~St ack() will be called first, which produces

St ny Capaci ty_
nyTop_[2 |

rryArrayPtrE—%

Memory allocated to st — nyCapacity_, nyTop_, and nyArrayPt r — will then be

reclaimed in the usual manner.

-13-

5. Copy constructor

-14-

Is needed whenever a copy of a class object must be built, which occurs:

In initializations

When aclass object is passed as a value parameter

When a function returns a class object
If temporary storage of a class object is needed

If a class has no copy constructor, the compiler uses a default copy constructor that does a
byte-by-byte copy of the object. This has been adequate for classes up to now, but not for

a class containing pointers to run-time allocated arrays (or other structures).
For example, a byte-by-byte copying of st to produce acopy st Copy gives

st

st Copy

nyCapaci ty_
myTop_[2]
nmyArrayPtr E—

nyCapaci ty_
nyTop_[2]
nyArrayPtr E—

3 4

0 1 2
aJbf c]

Thisis not correct, since copies of nyCapacity_, nyTop_, and nyArrayPt r have been
made, but not a copy of the run-time allocated array. Modifying st Copy will modify st

also!

What is needed isto create a distinct copy of st , in which the array in st Copy has exactly
the same elements asthe array in st :

st

st Copy

nyCapaci t y_

nyTop_|[2] 0 1 2 3 4
nyArrayPtr [H—>{3 Rl ¢ [|
nyCapacity_| 5]

nyTop_[2] ol 1| 2 3 4
rryArrayPtrE—ﬁa|t|c| [7|

The copy constructor must be designed to do this.

-15-
Form of copy constructor:

e |t isaconstructor so it must be a function member, its name is the class name, and it has
no return type.

« |t needs a single parameter whose type is the class; this must be a reference parameter
and should be const since it does not change this parameter or pass information back
through it.

(Otherwise it would be a value parameter, and since a value parameter is a copy of its
argument, a call to the copy instructor will try and copy its argument, which calls the
copy constructor, which will try and copy its argument, which calls the copy
constructor . . .)

//***** R-I-StaCkh *k k%%

/* --- Copy Constructor ---

* Precondition: A copy of a stack is needed

* Recei ve: The stack to be copied (as a const
* ref erence paraneter)

* Postcondition: A copy of original has been constructed.

**/

Stack(const Stack<StackEl ement> & original);

/'l end of class declaration
/1 Definition of copy constructor

tenpl at e <cl ass StackEl enment >
St ack<St ackEl enment >: : St ack(const St ack<St ackEl enent> & ori gi nal)

{
nmyCapacity = original.nyCapacity_; /1l copy nyCapacity_ nenber
nyArrayPtr = new StackEl enent [nyCapacity]; /'l allocate array in copy
if (nmyArrayPtr == 0) /'l check if nmenory
avail abl e
{
cout << "*** |nadequate nenory to allocate stack ***\n";
exit(-1);

for (int pos = 0; pos < nmyCapacity ; pos++) // copy array mnenber
nyArrayPtr[pos] = original.nyArrayPtr[pos];
nmyTop_ = original.nyTop_; /1l copy nyTop_ menber

-16-
6. Assignment

Assignment is another operation that requires special attention for classes containing
pointers to run-time arrays (or other structures). Like the copy constructor, the default
assignment operation does byte-by-byte copying. With it, the assignment statement

s2Copy = s2;

will give the same situation described earlier; the nyAr r ayPt r data members of both s2
and s2Copy would both point to the same anonymous array.

What is needed is to overload the assignment operator (oper at or =) so that it creates a
distinct copy of the stack being assigned.

oper at or = must be a member function. So an assignment
stLeft = stR ght;

will be translated by the compiler as
stLeft. operator=(stRi ght);

Prototype:

[* --- Assignnment Operator ---

*

* Receive: Stack stRight (the right side of the assignnment operator)
* obj ect containing this nmenber function

* Return (inplicit parameter): The Stack containing this

* function which will be a copy of stRight

* Return (function): A reference to the Stack containing

* this function

**/

St ack<St ackEl enent > & oper at or =(const St ack<St ackEl enment> & ori gi nal);

Thereturn typeis areferenceto a St ack since oper at or =() must return the object on
the left side of the assignment and not a copy of it (to make chaining possible).

Definition:
It is quite similar to that for the copy constructor, but there are some differences:

1. The St ack on the left side of the assignment may already have a value.
Must destroy it —deallocate the old so no memory leak and allocate a new one

2. Assignment must be concerned with self-assignments. st = st;
Can't destroy the right old value in this case.

3. oper at or =() must return the St ack containing this function.

-17-
For this we use the following property of classes:

Every member function of a class has access to a (hidden) pointer constant
this
whose value is the address of the object containing this function. The expression
*this

refers to the object itself.

We can now write the definition of oper at or =() :

[1*** Definition of operator=
tenpl ate <cl ass StackEl enent >
St ack<St ackEl enent > &
St ack<St ackEl enent >: : oper at or =(const St ack<St ackEl enent > & ori gi nal)

if (this !'= &original) /'l check that not st = st
{
delete[] nyArrayPtr; /| destroy previous array
nyArrayPtr = new StackEl enent[nyCapacity]; // allocate array in copy
i f (nyArrayPtr == 0) /1l check if nenory avail abl e
cerr << "*** | padequate nenory to allocate stack ***\n";
exit(-1);
nyCapacity = original.nyCapacity_; /'l copy nyCapacity_ nenber

for (int pos = 0; pos < nyCapacity_; pos++) // copy array nenber
nmyArrayPtr[pos] = original.nyArrayPtr[pos];
nyTop_ = original.nyTop_ ; /1l
}

return *this; /[l return reference to
/1l thi s object

copy nyTop_ nenber

//***** Test D-Iver kkkkhkkkhkhkkkhkhkhkhkkhkikkkikikhkkkikikkk*kx

#i ncl ude <i ostreanr
usi ng nanespace std;
#i ncl ude "RTSt ack. h"

Print (Stack<int> st)
{

cout << st;

}

int main()

int Size;
cout << "Enter stack size: ";
cin >> Sjze;

St ack<i nt> S(Si ze);
for (int i =1; i <=5; i++4)
S. push(i)

Stack<int> T = S
cout << T << endl;

Sample Runs.
Enter stack capacity: 5

RPNWS~O

Enter stack capacity: 3

*** Stack is full -- can't add new val ue ***
*** Stack is full -- can't add new val ue ***
3
2
1

Enter stack capacity: O

St ackRT. cc: 12: failed assertion ~NunEl enents > 0

Abor t

-18-

Test driver with statements in the constructor, copy constructor, and destructor to trace when they

-10-

See Figure 8.7 on pp. 440-2

/./***** Test D-Iver k) k%
Hi _ncI ude <i ostreanp
usi ng nanespace std;

#i ncl ude " St ackRTenpl"

Print (Stack<int> st)
{

cout << st;

}
i nt main()

I nt nuntEl enent s;
cout <<"Enter stack capacity: ";
cin >> nuntl enents;

cout << "F*AF*\n";

St ack<i nt> s(nuntl enents);
cout << "**B**\n";

for (int i =1, I <=5; i++)

{
cout << "**C**\n";
S. push(i);

cout << "**Dr*\n";
Stack<int>t = s;
cout << "**Ex*\n";
Print(t);

cout << "**Fx*\n":
St ack<i nt> u;

cout << "**G*\n";
u==t,;

cout << "**H*\n";
Print(u);

cout << "**|**\n":

Enter stack capacity: 5

A

CONSTRUCTOR
B

**Ck*

**Ck*

**Ck*

**Ck*

**Ck*

**D\’*

CCPY CONSTRUCTOR

E

CCPY QCONSTRUCTOR

RPNWhkOo

DESTRUCTOR

* * F* *

CONSTRUCTOR

* * Gc *

* * I_I* *

CCOPY CONSTRUCTCR

RPNWhO

DESTRUCTCOR
* * I * *

DESTRUCTOR
DESTRUCTCOR
DESTRUCTOR

[20]
Part 2: LinkedLists and Other Linked Structures (Chap 8: §1-3, §6-8, Chap. 9)

D. Introduction to Lists (88.1)

1. As an abstract datatype, alist isafinite sequence (possibly empty) of elements with basic
operations that vary from one application to another, but that commonly include:

Construction: Usually constructs an empty list

Empty: Check if list is empty

Traverse: Go through the list or a part of it, accessing and processing the
elementsin order

Insert: Add an item at any point in thelist.
Delete: Remove an item from the list at any point.

2. Array/Vector-Based |mplementation of aList

Data Members:
Store the list items in consecutive array or vect or locations:
ay, 3, g, --- an
a[0] a[1] a[2] ... a[n-1] a[n] ... a] CAPAC TY-1]

For an array, add anySi ze member to store the length (n) of the list

Basic Operations
Construction: For array: SetnySi ze to O; if run-time array, allocate memory for it
For vect or : let its constructor do the work.

Empty: nySi ze ==

For vector: Useitsenpt y() operation
Traverse: for (int 1 =0; I < size;, i++)

{ Process(a[i]); }

or

I = 0;

while (i < size)

{ Process(ali]);

| ++;

}

Insert: Insert 6 after 5in 3,5, 8,9, 10, 12, 13, 15

'R ERERERR
3,5,6,8,9,10,12,13,15

Have to shift array e ements to make room.
Delete: Delete 5 from preceding list:
3,5,6,8,9, 10, 12, 13, 15

e ¥ & £/
3,6,8,9, 10,12, 13, 15

Have to shift array e ements to close the gap.

E. Introduction to Linked Lists (88.2)
The preceding implementation of listsisinefficient for dynamic lists (those that change
frequently due to insertions and deletions), so we look for an alternative implementation .
Minimal requirements. We must be able to:

1. Locate the first element.

2. Given thelocation of any list element, find its successor.

3. Determineif at the end of thelist.

For the array/vector-based implementation:
1. Atlocation O

2. Successor of item at location i isat locationi + 1
3. Atlocationsize -1

Theinefficiency is caused by #2; relaxing it by not requiring that list elements be stored in
consecutive location leads usto linked lists.

1. Alinked list isan ordered collection of elements called nodes each of which has two
parts:

(1) Data part: Stores an element of the list;

(2) Next part: Storesalink (pointer) to the location of the node containing the
next list element. If there is no next element, then a special null value is used.

Also, we must keep track of the location of the node storing the first list element,
Thiswill be the null value, if the list is empty.

Example: A linked list storing 9, 17, 22, 26, 34:

data
first 1 | 9 17 22 26 34
// // // // __|.|.|
next

2. Basic Operations:
Construction: first = null_value;

Empty: first == null _value?
Traverse: ptr = first;

while (ptr !'= null_value)

Process data part of node pointed to by ptr;

ptr = next part of node pointed to by ptr;
}

See pp. 391-2

\@

firstE—>

first|3—> 9

Insert: Insert 20 after 17 in the preceding linked list; suppose pr edpt r pointsto
the node containing 17.

(1) Get anew node pointed to by newpt r and store 20 in it

pr edpt rEk

first[3— 9/17/2 ﬁ
A e
newpt r[4 >20

(2) Set the next pointer of this new node equal to the next pointer in its

predecessor, thus making it point to its successor.

pr edpt rEk

first[F—» 9 17 22 29
=T —
newpt r[}— 20

(3) Reset the next pointer of its predecessor to point to this new node.

pr edpt rEk

first[3—

9

o

17

22

29

e

5

newpt r[+—»

—

_|.|.,

Note that this also works at the end of the list.
Example: Insert a node containing 55 at the end of thelist.
(1) as before

(2) as before — sets next link to null pointer

(3) as before

first [—

pr edpt rEk

55

9 17 20 22 29 34
// // // // // /
Q\

newpt r

Inserting at the beginning of the list requires a modification of step 3:
Example: Insert anode containing 5 at the beginning of thelist.
(1) as before

(2) sets next link to first node in the list
(3) set first topoint to new node.

pr edpt r|:_|_|.|.|
9

first

17

20

22

29

ol

newpt r[>

55

K& Note: In all cases, no shifting of list elementsisrequired !

Delete Delete node containing 22 from the following linked list; suppose pt r points
to the node to be deleted and pr edpt r points to its predecessor (the node

containing 20)..
predptrEk ptr Ek
2

first|5|_> 5 9 17 0 22 29 34

A A A A 7 7 __|.|.|

(1) Do abypass operation: Set the next pointer in the predecessor
to point to the successor of the node to be deleted

predptrEk ptr Ek
2
|

first 17 0 22| | 29

ll=g=g=g=Nericy=

(2) Dedllocate the node being deleted.

free store
predptr EL ptr //
first —1 | 5 9 17 20 22 29 34
/ /
// // // Q_-// —— __|_|_|

Note that this also works at the end of the list.
Example: Delete the node at the end of thelist.

(1) as before — sets next link to null pointer
(2) as before

predpt rEk ptr E_%eestore
29

first

—1 » 5/

/17/22/ 34
=5 S

Deleting at the beginning of the list requires a modification of step 1:

Example: Delete 5 from the previous list

predptr ptr EL

first] ,5/ 17 22

~ ~ ~

29

(1) reset first
(2) as before

pr edpt r|3—|-|1 ptr E|—|/-|1ﬂfreestore

first 5 9 17 22 29
— /
\j // //] _—H—I

K& Note: In all cases, no shifting of list elementsisrequired !

3. Wegain alot with linked lists. Do we lose anything?

We no longer have direct access to each element of the list;
we have direct access only to the first element.

List-processing algorithms that require fast access to each element cannot (usually) be
done as efficiently with linked lists:

Example: Appending avalue at the end of the list:

— Array-based method:
a[size++] = val ue;

or for a vector:

v. push_back(val ue);

— For alinked list:

Get anew node; set data part = val ue and next part = null_value
If list is empty

Setfirst topoint to new node.
else

Traverselist to find last node

Set next part of last node to point to new node.

Other examples. Many sorting algorithms need direct access
Binary search needs direct access

F. Implementing Linked Lists

1. Linked lists can be implemented in many ways. For example, we could use
arrays/vectors (Read §8.3)

For nodes:
typedef int DataType; // DataType is type of list elenments
t ypedef int Pointer; /] pointers are array indices

struct NodeType

Dat aType dat a;
Poi nter next;

}s
For free store:
const int NULL VALUE = -1;

const int nunber O Nodes = 2048;
NodeType node[nunber O Nodes] ;
Poi nter free; /] points to a free node

/[l Initialize free store
/'l Each node points to the next one

for (int i =0; i < nunberCNodes - 1; i++)
node[i].next =1 + 1;
node[nunber & Nodes - 1].next = NULL_VALUE;
free = 0;

1 —

1 2 —

2 3 _|
3 4

nurm\odes- 1

nunNodes- 1 -1 }

/[l Maintain free store as a stack
/1 New operation
Poi nter New()
{ Pointer p = free;
If (free !'= NULL_VALUE)
free = node[free]. next;
el se
cerr << "***Free store enpty***\n";
return p;

/] Del ete operation
voi d Del et e(Poi nter p)
{ node[p].next = free;
free = p;

}

For the linked list operations:
Use node[p] . dat a to access the data part of node pointed to by p
Use node[p] . next to access the next part of node pointed to by p

Example: Traversal

Pointer p = first;
while (p !'= NULL_VALUE)

Process(node[p] . dat a) ;
p = node[p]. next;

2. Implementing Linked Lists Using C++ Pointers and Classes (88.6)

a. To Implement Nodes

cl ass Node

{

publ i c:
Dat aType dat a;
Node * next;

b

Note: The definition of a Node isa recursive (or self-referential) definition because it
uses the name Node in its definition: the next member is defined as a pointer to

aNode.
b. How do we declare pointers, , assign them, access contents of nodes, etc.?
Declarations:
Node * ptr; or typedef Node * NodePoi nter;

NodePoi nter ptr;

Allocate and Deallocate:
ptr = new Node; del ete ptr;

To accessthe dat a and next part of node:
(*ptr).data and (*ptr).next

or better, use the - > oper ator
ptr->data and ptr->next

Why make data members public in class Node?

This class declaration will be placed inside another class declaration for Li nkedLi st .
The data members dat a and next of struct Node will be public inside the class and
thus will accessible to the member and friend functions of the class, but they will be
private outside the class.

#i f ndef LI NKEDLI ST
#def i ne LI NKEDLI ST

t ypedef int DataType;

cl ass Li nkedLi st

{

private:
cl ass Node

publ i c:
Dat aType dat a;
Node * next;
}
t ypedef Node * NodePoi nter;

|
#endi f

So why not just make Node a struct? We could, but it is common practice to use struct

for C-style structs that contain no functions (and we will want to add a few to our Node
class.)

. Data Membersfor Li nkedLi sts

Linked listslike

first

—J—»| 9 17 22 26 34
// // // // __|.|.|

are characterized by:

(1) Thereis a pointer to the first node in the list.
(2) Each node contains a pointer to the next node in the list.
(3) Thelast node contains a null pointer.

We will call the kind of linked lists we've just considered simple linked lists to
distinguish them from other variations we will consider shortly — circular, doubly-
linked, lists with head nodes, etc..

For simple linked lists, only one data member is needed: a pointer to the first node.
But, for convenience, another data member is usually added that keeps a count of the
elements of thelist:

first » 9 17 22 26 34
// // // // ——|-|-I

nySi ze

Otherwise we would have to traverse the list and count the e ements each time we need
to know the list's length.
(See p. 446)
1. Set count to 0.
2. Make pt r point at the first node.
3. Whilept r isnot null:
a. Increment count .
b. Make pt r point at the next node.
4., Return count .

c. Function Members for Li nkedLi st s

Constructor: Make first anull pointer and set nySi ze to 0.

Destructor: Why is one needed? For the same reason as for run-time arrays.
If we don't provide one, the default destructor used by the compiler for a
linked list like that above will result in:

free store
=7
L ////7
first VAN 9 17 22 26 34
. == =" ——|-|-|
ySi ze : .

mar ooned!

Copy constructor: Why is one needed? For the same reason as for run-time arrays.
If we don't provide one, the default copy constructor (which just does a
byte-by-byte copy) used by the compiler for alinked list like L will

produce:
- 9 17 22 26 34
first >
| //v //v // // ——|-|-'
nySi ze
copyOf L _ =
first
nySi ze

d. Other Kinds of Linked Lists (89.1)

I. In some applications, it is convenient to keep access to both the first node and the last

nodein thelist.
- 9 17 22 26 34
first >
// // // ///' ——I-I-I
| ast | —,
nySi ze

ii. Sometimesahead nodeisused so that every node has a predecessor , which
thus eliminates special cases for inserting and deleting.

first | —T—» ?

~

P A

A

A

17/

7

22 26
/

7

/31‘|1*

The data part of the head node might be used to store some information about the
list, e.g., the number of valuesin thelist.

iil. Sometimesatrailer nodeisaso used so that every node has a successor .

first | -T—»

?

9

17

22

4

26

4

~

el

vl

A

A

vl

7

7

34/?

A1]

(Two or more lists can share the same trailer node.)

=D

Iv. In other applications (e.g., linked queues), acircular linked list isused; instead of
the last node containing a NULL pointer, it contains a pointer to the first node in the
list. For such lists, one can use a single pointer to the last node in the list, because
then one has direct access to it and "amost-direct" access to the first node.

last | 7

0| »

17

ol

22| o

26

N

RN

>

34

A

rd

7

C

>

v. All of these lists, however, are uni-directional; we can only move from one node to
the next. In many applications, bidirectional movement is necessary. In this case,
each node has two pointers — one to its successor (null if there is none) and one to

its precedessor (null if thereisnone.) Such alist is commonly called adoubly-
linked (or symmetrically-linked) list.

| ast | / '-I-I-— | - - |
) 9 17 22 26 34
first > —1 v —1 1 —1 v _—|'|'|
mySi ze next

vi. And of course, we could modify this doubly-linked list so that both lists are circular
forming adoubly-linked ring.

L 7
| ast | / = - - = | la’
. 9 17 22 26 34
first T]y
mySi ze >

Add a head node and we have the implementation used in STL's | | st class.

G. The STL | i st Class Template

| i st isasequential container that is optimized for insertion and erasure at arbitrary points
in the sequence.

1. Implementation

Asacircular doubly-linked list with head node.

- | ast a <~ Eev — |‘>

datg 9 17 22 26 34

P
first - 1]
nySi ze next >

Its node structureis:

\

\

struct |ist_node

{

pointer next,
prev;
T dat a;
}

2. Allocation/Deallocation:

Onthe surface, | i st looks quite simple. But it's allo/deallo-cation scheme is more
complex than simply using newand del et e operations. To reduce the inefficiency of
using the heap manager for large numbers of allo/deallo-cations, it doesit's own memory

management.
Basically, for each list of acertaintype T:
When a node is heeded:
1. If thereisanode on the freelist, allocate it.

(Thisis maintained as alinked stack in exactly the way we described earlier.)
2. If thefreelist is empty:

a. Call the heap manager to allocate a block (called abuffer) of size (usualy)
4K bytes.

b. Carveit up into pieces of sizerequired for anode of al i st <T>.
When anode is deallocated:
Push it onto the freelist.

When all lists of thistype T have been destroyed:
Return all buffers to the heap.

3. Comparing | i st with other containers (p. 450)

Property Array vect or deque i st
Direct/random access ([]) Or Or o) X
Sequential access Or Or) Or
Insert/delete at front e} e} Or Or
Insert/delete in middle O O O Or
Insert/delete at end Or Or Or Or
Overhead lowest low low/medium high

Asthetableindicates, | i st does not support direct/random access and thus does not

provide the subscript operator [] .

4. |i st iterators (p. 451)

|'i st'siterator is"weaker" than that for vect or .
iterator and | i st 'sisabidirectional iterator. They have the following operationsin

(vect or 'sis called arandom access

common:

e ++ Move iterator to the next element (like ptr = ptr-> next)
- -- Move iterator to the preceding element (like ptr = ptr-> prev)
- * dereferencing operator: to access the value stored

at the position to which an iterator points (like ptr-> data)
- = assignment: for sametypeiterators,itl = it2

setsi t 1'spositionto sameasi t 2's
e ==and!= for sametypeiterators,itl == it 2istrueif

itlandit 2 areboth positioned at the same element
but bidirectional iterators do not have:

addition (+) and subtraction (-)
the corresponding shortcuts (+=, - =),
subscript ([])

This means that algorithms such assor t () which require direct/random access cannot
beused with | | st s.

Example: Construct alist containing first 4 even integers; then output the list.

list<int> |;
for (int 1 =1; 1 <=4; i++)
| . push_back(2*i);
for (list<int>:iterator it =1.begin(); it I'=1.end(); it++)

cout << *jit << " "
cout << endl;

5. |'i st member functions and operators (See Table 8.1)

Function Member

Description

Constructors
[ist<T> I;
[ist<T> I(n);

list<T> I(n, 1nitval);

l'ist<T> I(fPtr, IPtr);

Copy constructor

Construct I asanempty | i st <T>

Construct I asal i st <T> to contain n elements (set to
default value)

Construct I asal i st <T> to contain n copies
ofinitval

Construct I asal i st <T> to contain copies of elementsin
memory locations f pt r uptol pt r (pointersof typeT *)

Dle_Lr(l;ctor Destroy contents, erasing al items.

~l i st

l.enpty() Returnt r ue if and only if 1 contains no values
1.size() Return the number of values I contains

1. push_back(value);
. push_front (value);
I.insert (pos, value)

l.insert(pos, n, value);
l.insert(pos, fPtr,

1Ptr) ;

Append value a I'send

Insert value infront of I'sfirst element

Insert value into I at iterator position pos and return an
iterator pointing to the new element'’s position

Insert n copiesof value into I at iterator position pos

Insert copiesof all the elementsin therange [TPtr,
IPtr) atiterator position pos

. pop_back();
.pop_front();

. erase(pos);
.erase(posl, pos2);
. renove(value) ;

Erase I's last element

Erase I'sfirst element

Erasethevauein 1 at iterator position pos

Erasethevaluesin 1 from iterator positionsposl1l to pos2

Eraseal elementsin I that match value, using== to
compare items.

1. uni que() Replace all repeating sequences of asingle element by a
single occurrence of that element.

I.front() Return areference to 1'sfirst element

1.back() Return areference to 1'slast element

1. begi n() Return an iterator positioned to I'sfirst value

1. end() Return an iterator positioned 1 element past I'slast value

1. rbegi n() Return areverse iterator positioned to I'slast value

1. rend() Return areverse iterator positioned 1 element before I'sfirst

value

I.sort();
I.reverse();

Sort I's elements (using <)
Reverse the order of I's elements

11. nerge(12);

11. splice(pos,
11. splice(to,

11. splice(pos,

12);
12, from);
12,

first, last);

Remove all the elementsin 12 and merge them into 11; that

IS, move the elements of 12 into 11 and place them so
that the final list of elementsis sorted using <; (Assumes
both 12 and 11 were sorted using <)

Remove all the elementsin 12 and insert theminto 11 at
iterator position pos

Remove the element in 12 at iterator position from and
insert it into 11 at iterator position to

Remove all the elementsin 12 at iterator positions
[First, last)andinserttheminto 11 at iterator position
pos

11 swap(12); Swap the contents of 11 with 12
Operator Description
1L =12 Assignto 11 acopy of 12
11 == 12 Returntrue if and only if 11 containsthe sameitemsas 12,
n the same order
11 < 12 Returntrue if and only if 11 islexicographically lessthan 12

6. Sample program illustrating list operations (See Figure 8.8)

#i ncl ude <i ostreane
#include <list>

#i ncl ude <al gorithne
usi ng nanespace std;

ostream & operator<<(ostream & out, list<int>1|)

for (list<int>:iterator i =1.begin(); i !'=1.end(); i++)
OUt << *i << n ||;

return out;

}

int main()
list<int> 1, 11(4, 111), 12(6);
cout << "l: " << | << " size =" << |.size() << endl
cout << "I1l: " << |1 <<" size =" << |1l .size() << endl;
cout << "l2: " << |2 << " size =" << |2.size() << endl;

/1 construct |3 froman array
int b[] = {2, 22, 222,2222};
list<int> |3(b, b+4);

cout << "13: " << |3 << endl;

/| assi gnnent

cout << "\nAssignments | =13 and 12 =13:" << endl;

I =13;

12 =13;

cout << "l =" << | << " size =" << |.size() << endl;
cout << "l12 =" << |2 << " size =" << |2.size() << endl;

cout << "\nlnserts in I1:\n";
list<int> :iterator i;

i =11 begin();

i ++ 0+t

l1.insert(i, 66666);

cout << |1 << endl;

[1.insert(i,3, 555);
cout << 11 << endl;

l1.insert(i, b, b+3);
cout << 11 << endl;

| 1. push_back(888);
' 1. push_front (111);
cout << |1 << endl;

cout << "\nErases in |1:\n";
i = find(l1l begin(), |1l end(), 66666);
if (i '=11.end())

{

/1 find is an algorithm

cout << "66666 found -- will erase it\n";

| 1. erase(i);

el se
cout << "66666 not found\n":
cout << |1 << endl;

i =11.begin(); i+t
list<int>:iterator j = 11.end();
ot I el AL el B B Bl

| 1. erase(i,j);

cout << |1 << endl;

| 1. pop_back();
| 1. pop_front();
cout << |1 << endl;

cout << "\ nReverse |3:\n"
| 3. reverse();
cout << |3 << endl;

cout << "\nSort 11:\n";
[1.sort();
cout << |1 << endl;

cout << "\nMerge |11 and | 3:\n";

I 1. merge(l 3);
cout << "l1: " << |1 << endl;
cout << "13: " << |3 << endl;

cout << "\nSplice |2 into | at second position:\n";

i =l.begin(); i++

| .splice(i, |12);

cout << "I: " << | << endl;
cout << "I2: " << |2 << endl;

cout << "\nRenove 22s froml:\n";
| . renove(22);
cout << | << endl;

cout << "\nUnique applied to I1:\n";
[1. uni que();
cout << |1 << endl;

size = 0

11 111 111 111

I

[1: 1

1220 0 0 0 O O
13: 2 22 222 2222

Assi gnnents |
=2 22 222 2222
2 =2 22 222 2222

Inserts in | 1:

111 111
111 111
111 111
111 111

66666 111
66666 555
66666 555
111 66666

Erases in | 1:

66666 found -- wll

111 111
111 111
111 111

=13 and

Si z

111
555
555
555

_size =4
size = 6

2

Si

= |
e =
e

555
555
555

erase it

3

111 555 555 555 2
111 555 555 555 2
555 555 555 2 111

Reverse | 3:
2222 222 22 2

Sort |1:

2 111 111 111 111 555 555

Merge |1 and | 3:
1: 2 111 111 111 111 555 555 555 2222 222 22 2

| 3:

Splice |2 into |

4

4

111 111
2 22 222 111 111
555 2 22 222 111 111 888

22 222 111 111 888
111 111 888
111

555

at second position:

l: 2 2 22 222 2222 22 222 2222

| 2:

Renove 22s from/l
2 2 222 2222 222 2222

Uni que applied to | 1:
2 111 555 2222 222 22 2

