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VIII.  Run-Time Arrays—Intro. to Pointers (§8.4 & 8.5)

A. Introduction to Pointers
For declarations like

double doubleVar;
char charVar = 'A';
int intVar = 1234;

the compiler constructs the object being declared (intVar, doubleVar, and charVar),
which means that it:

1. Allocates memory needed for values of that type
2. Associates the object's name with that memory
3. Initializes that memory

For example:

0x1220
0x1221
0x1222
0x1223
0x1224
0x1225
0x1226
0x1227
0x1228
0x1229
0x122a
0x122b
0x122c

intVar

charVar
doubleVar

1. The Address-of Operator (&)

We have seen (Lab 1) that a variable's address can be determined by using the address-of
operator (&):

 &variable is the address of variable

Example: For the scenario described above:
  Values of &intVar,   &charVar,  and   &doubleVar

                          ↓                ↓                        ↓
                    0x1220,        0x1224,       and   0x1225
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2.  Pointer Variables

a. To make addresses more useful, C++ provides pointer variables.

Definition:  A pointer variable (or simply pointer) is a variable whose value is
a memory address.

b. Declarations:

Type * pointerVariable 

declares a variable named pointerVariable that can store the address of an object
of type Type.

Example:

#include <iostream>
using namespace std;

int main()
{
  int i = 11, j = 22;
  double d = 3.3, e = 4.4;

                          // pointer variables that:
  int * iptr, * jptr;     //    store addresses of ints)
  double * dptr, * eptr;  //    store addresses of doubles)

  iptr = &i;              // value of iptr is address of i
  jptr = &j;              // value of jptr is address of j

  dptr = &d;              // value of dptr is address of d
  eptr = &e;              // value of eptr is address of e

  cout << "&i = " << (void*)iptr << endl
       << "&j = " << (void*)jptr << endl
       << "&d = " << (void*)dptr << endl
       << "&e = " << (void*)eptr << endl;
}

Output produced:
&i = 0x7fffb7f4
&j = 0x7fffb7f0
&d = 0x7fffb7e8
&e = 0x7fffb7e0

3.  Dereferencing Operator

We have also seen that the dereferencing (or indirection) operator  * can be used to access a
value stored in a location.  Thus for an expression of the form

*pointerVariable

the value produced is not the address stored in pointerVariable,
but is instead the value stored in memory at that address.
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Example:
Value of dptr:  0x7fffb7e8
Value of *dptr:  3.3

0x7fffb7e8 3.3dptr d 0x7fffb7e8

*dptr

We say dptr points to that memory location (whose address is 0x7fffb7e8).
Suppose we replace the preceding output statements by: Output produced will be:

  cout << "i = " << *iptr << endl i = 11
        << "j = " << *jptr << endl j = 22
        << "d = " << *dptr << endl d = 3.3
      << "e = " << *eptr << endl; e = 4.4

4.  A Note about Reference Parameters

Recall the C++ function to exchange the values of two int variables:

void Swap(int & A, int & B)
{

int Temp = A; A = B; B = Temp;
}

The values of two int variables x and y can be exchanged with the call:

Swap(x,y);

The first C++ compilers were just preprocessors that read a C++ program, produced
functionally equivalent C code, and ran it through the C compiler.  But C has no reference
parameters.  How were they handled?

Translate the function to

void Swap(int * A, int * B)
{

int Temp = *A; *A = *B; *B = Temp;
}

and the preceding call to

Swap(&x, &y);

This indicates how the call-by-reference parameter mechanism works:

 → A reference parameter is a variable containing the address of its argument
(i.e., a pointer variable) and that is automatically dereferenced when used.
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6.  Anonymous Variables

a. Definition:  A variable is a memory location.
 A named variable has a name associated with its memory location,

so that this memory location can be accessed conveniently.

 An anonymous variable has no name associated with its memory location,
but if the address of that memory location is stored in a pointer
variable, then the variable can be accessed indirectly using the
pointer.

b. Named variables are created using a normal variable declaration. For example, in the
preceding example, the declaration

int j = 22;

i. constructed an integer (4-byte) variable at memory address 0x7fffb7f4 and initialized
those 4 bytes to the value 22; and

ii. associated the name j with that address, so that all subsequent uses of j refer to 
address 0x7fffb7f4; the statement

cout << j << endl;

will display the 4-byte value (22) at address 0x7fffb7f4.

c. Anonymous variables are created using the new operator, whose form is:

new Type 

When executed, this expression:
i. allocates a block of memory big enough for an object of type Type ,

and
ii. returns the starting address of that block of memory.

Example:

#include <iostream>
using namespace std;

int main()
{
  double * dptr,
         * eptr;

  Sample run:
   dptr = new double;
   eptr = new double; Enter two numbers: 2.2 3.3

2.2 + 3.3 = 5.5
  cout << "Enter two numbers: ";
  cin >> *dptr >> *eptr;
  cout << *dptr << " + " << *eptr
       << " = " << *dptr + *eptr << endl;
}
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The program uses the new operator to allocate two anonymous variables whose
addresses are stored in pointer variables dptr and eptr:

double * dptr, * eptr;

dptr = new double;
eptr = new double;

Note 1:  We could have performed these allocations as initializations in the declarations
of dptr and eptr:
double * dptr = new double,
       * eptr = new double;

Note 2:  new must be used each time a memory allocation is needed.  For example, in
the assignment

dptr = eptr = new double;

eptr = new double    allocates memory for a double value and assigns its
address to eptr, but    dptr = eptr    simply assigns this same address to
dptr (and does not allocate new memory.)

The program then inputs two numbers, storing them in these anonymous variables by
dereferencing dptr and eptr in an input statement:

cout << "Enter two numbers: ";
cin >> *dptr >> *eptr;

It then outputs the two numbers and their sum:

  cout << *dptr << " + " << *eptr
       << " = " << *dptr + *eptr << endl;

by dereferencing the pointer variables.

The expression *dptr + *eptr computes the sum of these anonymous variables. If
we had wished to store this sum in a third anonymous variable, we could have written:

double * fptr = new double;

*fptr = *dptr + *eptr;
cout << *fptr << endl;

Note:  It is an error to attempt to allocate the wrong type of memory block to
a pointer variable; for example,

double dptr = new int;    // error

produces a compiler error.
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7.  Memory Allocation/Deallocation

new receives its memory allocation from a pool of available
memory (called the heap or free store).  It is usually located
between a program and its run-time stack:  The run-time stack
grows each time a function is called, so it is possible for it to
overun the heap (if main() calls a function that calls a function
that calls a function ...)  It is also possible for the heap to overun
the run-time stack (if a program performs lots of new
operations). Program 

statements

Run-Time
Stack

Heap

If a program executes a new operation and the heap has been exhausted, then new returns
the value 0 (called the null address or null pointer).  It is common to picture a null
pointer variable using the electrical engineering ground symbol:

dptr

It is a good idea to check whether a pointer variable has a null value before attempting to
dereference it because an attempt to dereference a null (or uninitialized or void) pointer
variable produces a segmentation fault

double *dptr = new double;

if (dptr == 0)
{

cerr << "\n*** No more memory!\n";
exit(-1);

}

When many such checks must be made, an assertion is probably more convenient:

assert (dptr != 0);

The RTS grows each time a function is called, but it shrinks again when that function
terminates.  What is needed is an analogous method to reclaim memory allocated by new, to
shrink the heap when an anonymous variable is no longer needed.  Otherwise a memory
leak results.

For this, C++ provides the delete operation:

delete pointerVariable 

which deallocates the block of memory whose address is stored in pointerVariable,
when it is no longer needed.
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B. Run-Time-Allocated Arrays

Container classes like Stack and Queue that use arrays (as we know them) to store the
elements have one obvious deficiency:

Their capacities are fixed at compile time.

This is because arrays as we have used them up to now have their capacities fixed at compile
time.  For example, the declaration

double a[50];

declares an array with exactly 50 elements.

This kind of array is adequate if a fixed-capacity array can be used to store all of the data sets
being processed.  However, this often is not true because the sizes of the data sets vary. In this
case we must either:

— Make the array's capacity large enough to handle the biggest data set — an
obvious waste of memory for smaller data sets.

— Change the capacity in the array's declaration in the source program/library and
recompile.

It would be nice if the user could specify the capacity of the array/stack/queue at run time
and an array of that capacity would then be allocated and used. This is possible in C++.

1. Allocating an Array During Run-Time

The operator new can be used in an expression of the form

new Type[N]

where N  is an integer expression, to allocate an array with N elements, each of type
Type; it returns the base address of that array.

0  1  2  3  4    . . .     N-1

Returned by new

0x#####

This allocation occurs when this expression is executed, that is, at run-time, not at
compile-time.  This means that the user can input a capacity, and the program can allocate
an array with exactly that many elements!

The address returned by new must be assigned it to a pointer of type Type.  Thus a
declaration of a run-time-allocated array is simply a pointer declaration:

Type * arrayPtr;
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Example

int numItems;
double dub[20];    // an ordinary compile-time array
double *dubPtr;    // a pointer to a (run-time) array

cout << "How many numbers do you have to process? ";
cin >> numItems;

dubPtr = new double[numItems];

Note:  Recall that for an ordinary array like dub, the value of the array name dub is the
base address of the array.  So, in a subscript expression like

dub[i] ( same as operator[](dub, i) )

the subscript operator actually takes two operands:  the base address of the array and
an integer index.  since the pointer variable dubPtr also is the base address of an
array, is can be used in the same manner as an array name:

dubPtr[i] ( same as operator[](dubPtr, i) )

Example:
for (int i = 0; i < numItems; i++)
  cout << dubPtr[i] << endl;

2. Deallocating a Run-Time Array

We can use the delete operation in a statement of the form

delete[] arrayPtr;

This returns the storage of the array pointed to by arrayPtr to the heap.  This is
important because memory leaks involving arrays can result in considerable loss
of memory as in:

for(;;)
{

int n;
cout << "Size of array (0 to stop): ";
cin >> n;

  if (n == 0) break;

double * arrayPtr = new double[n];
  // process arrayPtr

. . .
}

Each new allocation of memory to arrayPtr maroons the old memory block.
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C. Run-Time-Allocation in Classes

Classes that use run-time allocated storage requirse some new members and modifications of
others:

1. Destructors:  To "tear down" the storage structure and deallocate its memory.
2. Copy constructors:  To make copies of objects (e.g., value parameters)
3. Assignment:  To assign one storage structure to another.

We will illustrate these using our Stack class.

1. Data Members

We will use a run-time allocated array so that the user can specify the capacity of the stack
during run time.  We simply change the declaration of the myArray member to a pointer
and STACK_CAPACITY to a variable; to avoid confusion, we will use different names for
the data members.

//***** RTStack.h *****
/*  -- Documentation as earlier    (: Saving space :)    --*/

#ifndef RTSTACK
#define RTSTACK

#include <iostream>
using namespace std;

template <class StackElement>

class Stack
{
/***** Function Members *****/
 public:

 . . .
/***** Data Members*****/
private:
  StackElement * myArrayPtr;  // run-time allocated array to store elements
  int myCapacity_,            // capacity of stack
      myTop_;                 // top of stack

};
#endif
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2. The Class Constructor

We want to allow declarations such as

Stack<int> s1, s2(n);

to construct s1 as a stack with some default capacity,
and construct s2 as a stack with capacity n.

To permit both forms, we declare a constructor with a default argument:

  /* --- Class constructor ---
     Precondition:  A stack has been defined.
     Receive:       Integer numElements > 0; (default = 128)
     Postcondition: The stack has been constructed as a stack with
                      capacity numElements.
  -----------------------------------------------------------------*/

  Stack(int numElements = 128);

This constructor must really construct something (and not just initialize data members):

//*** Definition of class constructor
template <class StackElement>
Stack<StackElement>::Stack(int numElements)
{
  assert (numElements > 0);   // check precondition
  myCapacity_ = numElements;  // set stack capacity
                              // allocate array of this capacity
  myArrayPtr = new StackElement[myCapacity_];

  if (myArrayPtr == 0)        // check if memory available
  {
    cerr << "*** Inadequate memory to allocate stack ***\n";
    exit(-1);
  }                    // or assert(myArrayPtr != 0);

  myTop_ = -1;
}

   . . .

Now a program can include our RTStack header file and declare

cin >> num;
Stack<double> s1, s2(num);

s1 will be constructed as a stack with capacity 128 and s2 will be constructed as a stack
with capacity num.
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3. Other stack operations:  empty, push, top, pop, output

The prototypes and definitions of empty()as well as the prototypes of push(), top(),
pop(), and operator<<() are the same as before (except for some name changes).
See pages 428-31

The definitions of push(), top(), pop(), and operator<<() require accessing the
elements of the array data member.  As we have noted, the subscript operator [] can be
used in the same manner for run-time allocated arrays as for ordinary arrays, and thus
(except for name changes), the definitions of these functions are the same as before; for
example:

//*** Definition of push()
template <class StackElement>
void Stack<StackElement>::push(const StackElement & value)
{
  if (myTop_ < myCapacity_ - 1)
  {
    ++myTop_;
    myArrayPtr[myTop_] = value;
  }                  // or simply, myArrayPtr[++myTop_] = value;
  else
    cerr << "*** Stack is full -- can't add new value ***\n";
}

4. Class Destructor

For any class object obj we have used up to now, when obj is declared, the class
constructor is called to initialize obj.  When the lifetime of obj is over, its storage is
reclaimed automatically because the location of the memory allocated is determined at
compile-time.

For objects created during run-time, however, a new problem arises.  To illustrate,
consider a declaration:

. . .
Stack<double> st(num);

. . .

The compiler knows the data members myCapacity_, myTop_, and myArrayPtr of st
so it can allocate memory for them:

myArrayPtr

myTop_

myCapacity_
st
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The array to store stack elements is created by the constructor; so memory for it isn't
allocated until run-time:

0  1  2  3  4    . . .     num-1
myArrayPtr

myTop_

myCapacity_
st

When the lifetime of st ends, the memory allocated to myCapacity_, myTop_, and
myArrayPtr is automatically reclaimed, but not for the run-time allocated array:

 
0  1  2  3  4    . . .     num-1

We must add a destructor member function to the class to avoid this memory leak.

• Destructor's role:  Deallocate memory allocated at run-time (the opposite of the
constructor's role).

• At any point in a program where an object goes out of scope, the compiler inserts a call
to this destructor.  That is:

When an object's lifetime is over, its destructor is called first.

Form of destructor:

• Name is the class name preceded by a tilde (~).

• It has no arguments or return type

   ~ClassName()
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For our Stack class, we use the delete operation to deallocate the run-time array.

//***** RTStack.h *****
. . .

  /* --- Class destructor ---

     Precondition:  The lifetime of the Stack containing this
                      function should end.
     Postcondition: The run-time array in the Stack containing
                      this function has been deallocated.
  --------------------------------------------------------------*/

  ~Stack();

// Following class declaration
// Definition of destructor
template <class StackElement>
Stack<StackElement>::~Stack()
{
  delete[] myArrayPtr;
}

Suppose st is

myArrayPtr

myTop_

myCapacity_
st

0  1  2  3  4 
a  b  c

5

2

When st's lifetime is over, st.~Stack() will be called first, which produces

myArrayPtr

myTop_

myCapacity_
st

5

2

Memory allocated to st — myCapacity_, myTop_, and myArrayPtr — will then be
reclaimed in the usual manner.
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5. Copy constructor

Is needed whenever a copy of a class object must be built, which occurs:

•  When a class object is passed as a value parameter
•  When a function returns a class object
•  If temporary storage of a class object is needed
•  In initializations

If a class has no copy constructor, the compiler uses a default copy constructor that does a
byte-by-byte copy of the object.   This has been adequate for classes up to now, but not for
a class containing pointers to run-time allocated arrays (or other structures).

For example, a byte-by-byte copying of st to produce a copy  stCopy gives

0  1  2  3  4 
a  b  c

stCopy

myArrayPtr

myTop_

myCapacity_
st

5

2

myArrayPtr

myTop_

myCapacity_ 5

2

This is not correct, since copies of myCapacity_, myTop_, and myArrayPtr have been
made, but not a copy of the run-time allocated array.  Modifying stCopy will modify st
also!

What is needed is to create a distinct copy of st, in which the array in stCopy has exactly
the same elements as the array in st:

stCopy

myArrayPtr

myTop_

myCapacity_
st

5

2

myArrayPtr

myTop_

myCapacity_ 5

2

0  1  2  3  4 
a  b  c

0  1  2  3  4 
a  b  c

The copy constructor must be designed to do this.
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Form of copy constructor:

• It is a constructor so it must be a function member, its name is the class name, and it has
no return type.

• It needs a single parameter whose type is the class; this must be a reference parameter
and should be const since it does not change this parameter or pass information back
through it.

(Otherwise it would be a value parameter, and since a value parameter is a copy of its
argument, a call to the copy instructor will try and copy its argument, which calls the
copy constructor, which will try and copy its argument, which calls the copy
constructor . . . )

//***** RTStack.h *****
. . .

/* --- Copy Constructor ---
 * Precondition:  A copy of a stack is needed
 * Receive:       The stack to be copied (as a const
 *                  reference parameter)
 * Postcondition: A copy of original has been constructed.
 ************************************************************/
Stack(const Stack<StackElement> & original);
. . .

// end of class declaration

// Definition of copy constructor

template <class StackElement>
Stack<StackElement>::Stack(const Stack<StackElement> & original)
{
  myCapacity_ = original.myCapacity_;         // copy myCapacity_ member
  myArrayPtr = new StackElement[myCapacity_];   // allocate array in copy

  if (myArrayPtr == 0)                          // check if memory
available

  {
    cout << "*** Inadequate memory to allocate stack ***\n";
    exit(-1);
  }

  for (int pos = 0; pos < myCapacity_; pos++) // copy array member
    myArrayPtr[pos] = original.myArrayPtr[pos];
  myTop_ = original.myTop_ ;                  // copy myTop_ member
}
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6. Assignment

Assignment is another operation that requires special attention for classes containing
pointers to run-time arrays (or other structures).  Like the copy constructor, the default
assignment operation does byte-by-byte copying.  With it, the assignment statement

s2Copy = s2;

will give the same situation described earlier; the myArrayPtr data members of both s2
and s2Copy would both point to the same anonymous array.

What is needed is to overload the assignment operator (operator=) so that it creates a
distinct copy of the stack being assigned.

operator= must be a member function.  So an assignment
stLeft = stRight;

will be translated by the compiler as
stLeft.operator=(stRight);

Prototype:

/* --- Assignment Operator ---
 *  Receive: Stack stRight (the right side of the assignment operator)
 *             object containing this member function
 *  Return (implicit parameter):  The Stack containing this
 *             function which will be a copy of stRight
 *   Return (function): A reference to the Stack containing
 *             this function
 ************************************************************/
Stack<StackElement> & operator=(const Stack<StackElement> & original);

The return type is a reference to a Stack since operator=() must return the object on
the left side of the assignment and not a copy of it (to make chaining possible).

Definition:

It is quite similar to that for the copy constructor, but there are some differences:

1. The Stack on the left side of the assignment may already have a value.
Must destroy it —deallocate the old so no memory leak and allocate a new one

2.  Assignment must be concerned with self-assignments:    st = st;
 Can't destroy the right old value in this case.

3.  operator=() must return the Stack containing this function.



-17-

For this we use the following property of classes:

Every member function of a class has access to a (hidden) pointer constant
this

whose value is the address of the object containing this function.   The expression
*this

refers to the object itself.

We can now write the definition of operator=():

//*** Definition of operator=
template <class StackElement>
Stack<StackElement> &
   Stack<StackElement>::operator=(const Stack<StackElement> & original)
{
  if (this != &original)                        // check that not st = st
  {
    delete[] myArrayPtr;                        // destroy previous array

    myArrayPtr = new StackElement[myCapacity_]; // allocate array in copy
    if (myArrayPtr == 0)                      // check if memory available
    {
      cerr << "*** Inadequate memory to allocate stack ***\n";
      exit(-1);
    }

    myCapacity_ = original.myCapacity_;         // copy myCapacity_ member

    for (int pos = 0; pos < myCapacity_; pos++) // copy array member
      myArrayPtr[pos] = original.myArrayPtr[pos];
    myTop_ = original.myTop_ ;                  // copy myTop_ member
  }

  return *this;                                 // return reference to
}                                               //   this object

==================================================================
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//***** Test Driver *************************
#include <iostream>
using namespace std;
#include "RTStack.h"

Print (Stack<int> st)
{
  cout << st;
}

int main()
{
  int Size;
  cout << "Enter stack size: ";
  cin >> Size;

  Stack<int> S(Size);
  for (int i = 1; i <= 5; i++)
    S.push(i)

  Stack<int> T = S;
  cout << T << endl;
}

Sample Runs:
Enter stack capacity: 5
5
4
3
2
1
----------------------------------

Enter stack capacity: 3
*** Stack is full -- can't add new value ***
*** Stack is full -- can't add new value ***
3
2
1
----------------------------------

Enter stack capacity: 0
StackRT.cc:12: failed assertion `NumElements > 0'
Abort
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Test driver with statements in the constructor, copy constructor, and destructor to trace when they are called.

See Figure 8.7 on pp. 440-2

//***** Test Driver ***** Enter stack capacity: 5
#include <iostream> **A**
using namespace std; CONSTRUCTOR

**B**
#include "StackRTemp1" **C**

**C**
Print (Stack<int> st) **C**
{ **C**
  cout << st; **C**
} **D**

COPY CONSTRUCTOR
int main() **E**
{ COPY CONSTRUCTOR
  int numElements; 5
  cout << "Enter stack capacity: "; 4
  cin >> numElements; 3

2
  cout << "**A**\n"; 1
  Stack<int> s(numElements); DESTRUCTOR
  cout << "**B**\n"; **F**
  for (int i = 1; i <= 5; i++) CONSTRUCTOR
    { **G**
      cout << "**C**\n"; **H**
      s.push(i); COPY CONSTRUCTOR
    } 5
  cout << "**D**\n"; 4
  Stack<int> t = s; 3
  cout << "**E**\n"; 2
  Print(t); 1
  cout << "**F**\n"; DESTRUCTOR
  Stack<int> u; **I**
  cout << "**G**\n"; DESTRUCTOR
  u = t; DESTRUCTOR
  cout << "**H**\n"; DESTRUCTOR
  Print(u);
  cout << "**I**\n";
}
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Part 2:  LinkedLists and Other Linked Structures  (Chap 8: §1-3, §6-8, Chap. 9)

D. Introduction to Lists (§8.1)

1. As an abstract data type, a list is a finite sequence (possibly empty) of elements with basic
operations that vary from one application to another, but that commonly include:

Construction:  Usually constructs an empty list
Empty:  Check if list is empty
Traverse:  Go through the list or a part of it, accessing and processing the

    elements in order
Insert:  Add an item at any point in the list.
Delete: Remove an item from the list at any point.

2. Array/Vector-Based Implementation of a List

Data Members:
Store the list items in consecutive array or vector locations:

  a1,       a2,      a3 ,    . . .      an
   ↓        ↓        ↓                 ↓

  a[0] a[1] a[2] ... a[n-1] a[n] ... a[CAPACITY-1]

For an array, add a mySize member to store the length (n) of the list

Basic Operations
Construction:   For array:  Set mySize to 0; if run-time array, allocate memory for it

For vector: let its constructor do the work.

Empty:    mySize == 0
For vector:   Use its empty() operation

Traverse: for (int i = 0; i < size; i++)
{  Process(a[i]);  }

or
i = 0;
while (i < size)
{  Process(a[i]);
   i++;
}

Insert:  Insert 6 after 5 in  3, 5, 8, 9, 10, 12, 13, 15
                                 
            3, 5, 6, 8, 9, 10, 12, 13, 15

    Have to shift array elements to make room.

Delete:   Delete 5 from preceding list:
        3, 5, 6, 8, 9, 10, 12, 13, 15
                           
        3, 6, 8, 9, 10, 12, 13, 15

     Have to shift array elements to close the gap.
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E. Introduction to Linked Lists (§8.2)
The preceding implementation of lists is inefficient for dynamic lists (those that change
frequently due to insertions and deletions), so we look for an alternative implementation .
Minimal requirements:  We must be able to:

1.  Locate the first element.
2.  Given the location of any list element, find its successor.
3.  Determine if at the end of the list.

For the array/vector-based implementation:
1.  At location 0
2.  Successor of item at location i is at location i + 1
3.  At location size – 1

The inefficiency is caused by #2;  relaxing it by not requiring that list elements be stored in
consecutive location leads us to linked lists.

1. A linked list is an ordered collection of elements called nodes each of which has two
parts:

(1) Data part:  Stores an element of the list;

 (2) Next part:  Stores a link (pointer) to the location of the node containing the
next list element.  If there is no next element, then a special null value is used.

Also, we must keep track of the location of the node storing the first list element,
This will be the null value, if the list is empty.

Example:  A linked list storing 9, 17, 22, 26, 34:

9 17 22 26 34first
data

next

2. Basic Operations:

Construction:   first = null_value;

Empty:   first == null_value?

Traverse: ptr = first;
while (ptr != null_value)
{
  Process data part of node pointed to by ptr;
  ptr = next part of node pointed to by ptr;
}

See pp. 391-2
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9 17 22 26 34first

ptr

9 17 22 26 34first

ptr

...
9 17 22 26 34first

ptr

9 17 22 26 34first

ptr
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Insert: Insert 20 after 17 in the preceding linked list;  suppose predptr points to
the node containing 17.

(1) Get a new node pointed to by newptr and store 20 in it

20

9 17 22 29 34

predptr

newptr

first

(2) Set the next pointer of this new node equal to the next pointer in its
predecessor, thus making it point to its successor.

20

9 17 22 29 34

predptr

newptr

first

(3) Reset the next pointer of its predecessor to point to this new node.

20

9 17 22 29 34

predptr

newptr

first
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Note that this also works at the end of the list.
Example:  Insert a node containing 55 at the end of the list.

(1) as before
(2) as before — sets next link to null pointer
(3) as before

9 17 22 29 34first 20

55

predptr

newptr

Inserting at the beginning of the list requires a modification of step 3:
Example:  Insert a node containing 5 at the beginning of the list.

(1) as before
(2) sets next link to first node in the list
(3) set first to point to new node.

9 17 22 29 55first 20

5

predptr

newptr

34

 Note:  In all cases, no shifting of list elements is required !
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Delete: Delete node containing 22 from the following linked list;  suppose ptr points
to the node to be deleted and predptr points to its predecessor (the node
containing 20):.

5 17 22 29 34first 209

predptr ptr

(1) Do a bypass operation:   Set the next pointer in the predecessor
 to point to the successor of the node to be deleted

5 17 22 29 34first 209

predptr ptr

(2) Deallocate the node being deleted.

5 17 22 29 34first 20

free store 

9

predptr ptr

Note that this also works at the end of the list.
Example:  Delete the node at the end of the list.

(1) as before — sets next link to null pointer
(2) as before

5 17 22 29first 9

predptr ptr

34

free store 
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Deleting at the beginning of the list requires a modification of step 1:

Example:  Delete 5 from the previous list

5 17 22 29first 9

predptr ptr

(1) reset first
(2) as before

5 17 22 29first 9

free store predptr ptr

 Note:  In all cases, no shifting of list elements is required !
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3. We gain a lot with linked lists.  Do we lose anything?

We no longer have direct access to each element of the list;
we have direct access only to the first element.

List-processing algorithms that require fast access to each element cannot (usually) be
done as efficiently with linked lists:

Example:  Appending a value at the end of the list:

— Array-based method:

a[size++] = value;

or for a vector:

v.push_back(value);

— For a linked list:

Get a new node; set data part = value and next part = null_value
If list is empty

Set first to point to new node.
else

Traverse list to find last node
         Set next part of last node to point to new node.

Other examples:  Many sorting algorithms need direct access
Binary search needs direct access
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F. Implementing Linked Lists

1. Linked lists can be implemented in many ways.  For example, we could use
arrays/vectors  (Read §8.3)

For nodes:
typedef int DataType;  // DataType is type of list elements
typedef int Pointer;   // pointers are array indices
struct NodeType
{
  DataType data;

   Pointer next;
 };

For free store:

const int NULL_VALUE = -1;

const int numberOfNodes = 2048;
NodeType node[numberOfNodes];
Pointer free;          // points to a free node

// Initialize free store
// Each node points to the next one

for (int i = 0; i < numberOfNodes - 1; i++)
  node[i].next = i + 1;
node[numberOfNodes - 1].next = NULL_VALUE;
free = 0;

0
1
2
3
.
.
.

numNodes-1

. . .

data   next

1
2
3
4

-1
numNodes-1

nodefree

0

// Maintain free store as a stack
// New operation
   Pointer New()
   { Pointer p = free;
     if (free != NULL_VALUE)
       free = node[free].next;
     else
       cerr << "***Free store empty***\n";

return p;
   }
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// Delete operation
   void Delete(Pointer p)
   { node[p].next = free;
     free = p;
   }

For the linked list operations:
Use  node[p].data to access the data part of node pointed to by p
Use  node[p].next to access the next part of node pointed to by p

Example:  Traversal

Pointer p = first;
while (p != NULL_VALUE)
{
  Process(node[p].data);
  p = node[p].next;
}

2. Implementing Linked Lists Using C++ Pointers and Classes (§8.6)

a. To Implement Nodes

class Node
{
 public:
  DataType data;
  Node * next;
};

Note: The definition of a Node is a recursive (or self-referential) definition because it
uses the name Node in its definition:  the next member is defined as a pointer to
a Node.

b.  How do we declare pointers, , assign them, access contents of nodes, etc.?
Declarations:

Node * ptr; or typedef Node * NodePointer;
NodePointer ptr;

Allocate and Deallocate:
ptr = new Node; delete ptr;

To access the data and next part of node:
(*ptr).data   and     (*ptr).next

or better, use the -> operator
ptr->data   and     ptr->next

Why make data members public in class Node?
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This class declaration will be placed inside another class declaration for LinkedList.
The data members data and next of struct Node will be public inside the class and
thus will accessible to the member and friend functions of the class, but they will be
private outside the class.

#ifndef LINKEDLIST
#define LINKEDLIST

typedef int DataType;

class LinkedList
{
private:

class Node
{

     public:
DataType data;
Node * next;

};
  typedef Node * NodePointer;
  . . .
};
#endif

So why not just make Node a struct?  We could, but it is common practice to use struct
for C-style structs that contain no functions (and we will want to add a few to our Node
class.)

b. Data Members for LinkedLists

Linked lists like

9 17 22 26 34first

are characterized by:

(1) There is a pointer to the first node in the list.
(2)  Each node contains a pointer to the next node in the list.
(3)  The last node contains a null pointer.

We will call the kind of linked lists we've just considered simple linked lists to
distinguish them from other variations we will consider shortly — circular, doubly-
linked, lists with head nodes, etc..

For simple linked lists, only one data member is needed:  a pointer to the first node.
But, for convenience, another data member is usually added that keeps a count of the
elements of the list:
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L
first

mySize 5

9 17 22 26 34

Otherwise we would have to traverse the list and count the elements each time we need
to know the list's length.
(See p. 446)

1. Set count to 0.
2. Make ptr point at the first node.
3. While ptr is not null:

   a. Increment count.
   b. Make ptr point at the next node.

4. Return count.

c. Function Members for LinkedLists

Constructor:  Make first a null pointer and set mySize to 0.

Destructor: Why is one needed?   For the same reason as for run-time arrays.
If we don't provide one, the default destructor used by the compiler for a
linked list like that above will result in:

L
first

mySize 5

9 17 22 26 34

free store 

marooned!

Copy constructor:   Why is one needed?   For the same reason as for run-time arrays.
If we don't provide one, the default copy constructor (which just does a
byte-by-byte copy) used by the compiler for a linked list like L will
produce:

L
first

mySize 5

9 17 22 26 34

copyOfL
first

mySize 5
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d. Other Kinds of Linked Lists (§9.1)

 i. In some applications, it is convenient to keep access to both the first node and the last
node in the list.

L
first

mySize 5

9 17 22 26 34

last

ii.  Sometimes a head node is used so that every node has a predecessor, which
thus eliminates special cases for inserting and deleting.

first 9 17 22 26 34?

The data part of the head node might be used to store some information about the
list, e.g., the number of values in the list.

iii. Sometimes a trailer node is also used so that every node has a successor.

first 9 17 22 26 34? ?

(Two or more lists can share the same trailer node.)

iv. In other applications (e.g., linked queues), a circular linked list is used; instead of
the last node containing a NULL pointer, it contains a pointer to the first node in the
list.  For such lists, one can use a single pointer to the last node in the list, because
then one has direct access to it and "almost-direct" access to the first node.

9 17 22 26 34last
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 v. All of these lists, however, are uni-directional; we can only move from one node to
the next.  In many applications, bidirectional movement is necessary.  In this case,
each node has two pointers — one to its successor (null if there is none) and one to
its precedessor (null if there is none.)  Such a list is commonly called a doubly-
linked (or symmetrically-linked) list.

L

first

mySize 5

last

9 17 22 26 34

prev

next

vi. And of course, we could modify this doubly-linked list so that both lists are circular
forming a doubly-linked ring.

L

first

mySize 5

last

9 17 22 26 34

Add a head node and we have the implementation used in STL's list class.
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G. The STL list Class Template

list is a sequential container that is optimized for insertion and erasure at arbitrary points

in the sequence.

1.  Implementation

As a circular doubly-linked list with head node.

L

first

mySize 5

last

17 22 26 349

prev

next

data

Its node structure is:

struct list_node
{

pointer next,
        prev;
T data;

}

2.  Allocation/Deallocation:

On the surface, list looks quite simple.  But it's allo/deallo-cation scheme is more
complex than simply using new and delete operations.  To reduce the inefficiency of
using the heap manager for large numbers of allo/deallo-cations, it does it's own memory
management.

Basically, for each list of a certain type T:
When a node is needed:

1.  If there is a node on the free list, allocate it.
(This is maintained as a linked stack in exactly the way we described earlier.)

2.  If the free list is empty:
a.  Call the heap manager to allocate a block (called a buffer) of size (usually)

4K bytes.
b.  Carve it up into pieces of size required for a node of a list<T>.

When a node is deallocated:
Push it onto the free list.

When all lists of this type T have been destroyed:
Return all buffers to the heap.
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3.  Comparing list with other containers  (p. 450)

Property Array vector deque list

Direct/random access  ([]) √+ √+ √ X
Sequential access √+ √+ √ √+
Insert/delete at front √− √− √+ √+
Insert/delete in middle √− √− √− √+
Insert/delete at end √+ √+ √+ √+
Overhead lowest low low/medium high

As the table indicates, list does not support direct/random access and thus does not
provide the subscript operator [].

4.  list iterators (p. 451)

list's iterator is "weaker" than that for vector.   (vector's is called a random access
iterator and list's is a bidirectional iterator.  They have the following operations in
common:

•      ++ Move iterator to the next element  (like ptr = ptr-> next)

•      -- Move iterator to the preceding element  (like ptr = ptr-> prev)

•       * dereferencing operator:  to access the value stored
at the position to which an iterator points     (like ptr-> data)

•       = assignment:   for same type iterators, it1 = it2
sets it1's position to same as it2's

•  == and != for same type iterators, it1 == it2 is true if
it1 and it2 are both positioned at the same element

but bidirectional iterators do not have:

addition (+) and subtraction (-)
      the corresponding shortcuts (+=, -=),
    subscript ([])

This means that algorithms such as sort() which require direct/random access cannot
be used with lists.

Example:  Construct a list containing first 4 even integers; then output the list.

list<int> l;

for (int i = 1; i <= 4; i++)
  l.push_back(2*i);

for (list<int>::iterator it = l.begin(); it != l.end(); it++)
cout << *it << "  ";

cout << endl;
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5.  list member functions and operators (See Table 8.1)

Function Member Description

Constructors
list<T> l;
list<T> l(n);

list<T> l(n, initVal);

list<T> l(fPtr, lPtr);

Copy constructor

Construct l as an empty list<T>
Construct l as a list<T> to contain n elements (set to

default value)
Construct l as a list<T> to contain n copies

ofinitVal
Construct l as a list<T> to contain copies of elements in

memory locations fptr up to lptr (pointers of type T * )

Denstructor
~list()

Destroy contents, erasing all items.

l.empty()
l.size()

Return true if and only if l contains no values
Return the number of values l contains

l.push_back(value);
l.push_front(value);
l.insert(pos, value)

l.insert(pos, n, value);
l.insert(pos, fPtr, lPtr);

Append value  at l's end
Insert value   in front of l's first element
Insert value  into l at iterator position pos and return an

iterator pointing to the new element's position
Insert n copies of value  into l at iterator position pos
Insert  copies of all the elements in the range [fPtr,
lPtr) at iterator position pos

l.pop_back();
l.pop_front();
l.erase(pos);
l.erase(pos1, pos2);
l.remove(value);

l.unique()

Erase l's last element
Erase l's first element
Erase the value in l at iterator position pos
Erase the values in l from iterator positions pos1 to pos2
Erase all elements in l that match value , using == to

compare items.
Replace all repeating sequences of a single element by a

single occurrence of that element.

l.front()
l.back()

Return a reference to l's first element
Return a reference to l's last element

l.begin()
l.end()

Return an iterator positioned to l's first value
Return an iterator positioned 1 element past l's last value

l.rbegin()
l.rend()

Return a reverse iterator positioned to l's last value
Return a reverse iterator positioned 1 element before l's first

value

l.sort();
l.reverse();

Sort l's elements (using <)
Reverse the order of l's elements
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l1.merge(l2);

l1.splice(pos, l2);

l1.splice(to, l2, from);

l1.splice(pos, l2,
          first, last);

l1.swap(l2);

Remove all the elements in l2 and merge them into l1; that
is, move the elements of l2 into l1 and place them so
that the final list of elements is sorted using <; (Assumes
both l2 and l1 were sorted using <)

Remove all the elements in l2 and insert them into l1 at
iterator position pos

Remove the element in l2 at iterator position from and
insert it into l1 at iterator position to

Remove all the elements in l2 at iterator positions
 [first, last)and insert them into l1 at iterator position
pos

Swap the contents of l1 with l2

Operator Description

l1 = l2 Assign to l1 a copy of l2

l1 == l2 Return true if and only if l1 contains the same items as l2,
n the same order

l1 < l2 Return true if and only if l1 is lexicographically less than l2
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6.  Sample program illustrating list operations  (See Figure 8.8)

#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

ostream & operator<<(ostream & out, list<int> l)
{
  for (list<int>::iterator i = l.begin(); i != l.end(); i++)
    out << *i << "  ";
  return out;
}

int main()
{
  list<int> l, l1(4, 111), l2(6);

  cout << "l:  " << l << "  size = " << l.size() << endl;
  cout << "l1: " << l1 << "  size = " << l1.size() << endl;
  cout << "l2: " << l2 << "  size = " << l2.size() << endl;

  // construct l3 from an array
  int b[] = {2, 22, 222,2222};
  list<int> l3(b, b+4);
  cout << "l3: " << l3 << endl;

  // assignment
  cout << "\nAssignments l = l3 and  l2 = l3:" << endl;
  l = l3;
  l2 = l3;
  cout << "l = " << l << "  size = " << l.size() << endl;
  cout << "l2 = " << l2 << "  size = " << l2.size() << endl;

  cout << "\nInserts in l1:\n";
  list<int>::iterator i;
  i = l1.begin();
  i++; i++;
  l1.insert(i, 66666);
  cout << l1 << endl;

  l1.insert(i,3, 555);
  cout << l1 << endl;

  l1.insert(i, b, b+3);
  cout << l1 << endl;

  l1.push_back(888);
  l1.push_front(111);
  cout << l1 << endl;



39

  cout << "\nErases in l1:\n";
  i = find(l1.begin(), l1.end(), 66666);  // find is an algorithm
  if (i != l1.end())
    {
      cout << "66666 found -- will erase it\n";
      l1.erase(i);
    }
  else
    cout << "66666 not found\n";
  cout << l1 << endl;

  i = l1.begin(); i++;
  list<int>::iterator j = l1.end();
  --j; --j; i = --j; i --; i--;
  l1.erase(i,j);
  cout << l1 << endl;

  l1.pop_back();
  l1.pop_front();
  cout << l1 << endl;

  cout << "\nReverse l3:\n";
  l3.reverse();
  cout << l3 << endl;

  cout << "\nSort l1:\n";
  l1.sort();
  cout << l1 << endl;

  cout << "\nMerge l1 and l3:\n";
  l1.merge(l3);
  cout << "l1: " << l1 << endl;
  cout << "l3: " << l3 << endl;

  cout << "\nSplice l2 into l at second position:\n";
  i=l.begin(); i++;
  l.splice(i, l2);
  cout << "l: " << l << endl;
  cout << "l2: " << l2 << endl;

  cout << "\nRemove 22s from l:\n";
  l.remove(22);
  cout << l << endl;

  cout << "\nUnique applied to l1:\n";
  l1.unique();
  cout << l1 << endl;

}
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Output:

l:    size = 0
l1: 111  111  111  111    size = 4
l2: 0  0  0  0  0  0    size = 6
l3: 2  22  222  2222

Assignments l = l3 and  l2 = l3:
l = 2  22  222  2222    size = 4
l2 = 2  22  222  2222    size = 4

Inserts in l1:
111  111  66666  111  111
111  111  66666  555  555  555  111  111
111  111  66666  555  555  555  2  22  222  111  111
111  111  111  66666  555  555  555  2  22  222  111  111  888

Erases in l1:
66666 found -- will erase it
111  111  111  555  555  555  2  22  222  111  111  888
111  111  111  555  555  555  2  111  111  888
111  111  555  555  555  2  111  111

Reverse l3:
2222  222  22  2

Sort l1:
2  111  111  111  111  555  555  555

Merge l1 and l3:
l1: 2  111  111  111  111  555  555  555  2222  222  22  2
l3:

Splice l2 into l at second position:
l: 2  2  22  222  2222  22  222  2222
l2:

Remove 22s from l:
2  2  222  2222  222  2222

Unique applied to l1:
2  111  555  2222  222  22  2


