
VII. Algorithm Complexity (Chap. 7)

Measuring the Efficiency of Algorithms: (§ 7.4)

1.  What to measure?
Space utilization:   amount of memory required
Time efficiency:  amount of time required to process the data.

— Depends on many factors:  size of input, speed of machine, quality of source code, 
quality of compiler.

Since most of these factors vary from one machine/compiler to another, we count the
number of times instructions are executed.  Thus, we measure computing time as:

T(n) = the computing time of an algorithm for input of size n
 = the number of times the instructions are executed.

2. Example:  See ALGORITHM TO CALCULATE MEAN on page 350

/* Algorithm to find  the mean of n real numbers.
Receive: An integer n ≥ 1 and an array x[0], . . . , x[n–1] of real numbers
Return: The mean of x[0], . . . , x[n–1]

----------------------------------------------------------------------------------------*/
1.  Initialize sum  to 0.
2.  Initialize index variable i  to 0.
3.  While i < n do the following:
4. a.  Add x[i] to sum.
5. b.  Increment i  by 1.
6.  Calculate and return mean = sum / n .

T(n) = 3n + 4

3. Definition of "big-O notation:  The computing time of an algorithm is said to have order
of magnitude f(n),  written     T(n) is O(f(n))
if  there is some constant C such that

T(n) ≤ C. f(n)  for all sufficiently large values of n.

We also say, the complexity  of the algorithm is O(f(n)).

Example:  For the Mean-Calculation Algorithm:
T(n) is O(n)

4. The arrangement of the input items may affect the computing time.  For example, it may
take more time to sort a list of element that are nearly in order than for one that are
completely out of order.  We might measure it in the best case or in the worst case or try
for the average.  Usually best-case isn't very informative, average-case is too difficult to
calculate; so we usually measure worst-case performance.



5.  Example:
a.  LINEAR SEARCH ALGORITHM on p. 354

/* Algorithm to perform a linear search of the list a[0], . . . , a[n – 1].
Receive: An integer n and a list of n elements stored in array elements

a[0], . . . , a[n – 1], and item of the same  type as the array elements.
Return: found = true and loc = position of item if the search is successful;

otherwise, found is false.
-------------------------------------------------------------------------------------------*/
1.  Set found = false.
2.  Set loc = 0.
3.  While loc < n and not found do the following:
4. If item = a[loc] then // item found
5.  Set found = true.
6.  Else // keep searching *)

Increment loc by 1.

Worst case:  Item not in the list:
TL(n) is O(n)

b.  BINARY SEARCH ALGORITHM on p. 355
/* Algorithm to perform a binary search of the list a[0], . . . , a[n – 1]

in which the items are in ascending order.

Receive: An integer n and a list of n elements in ascending order
stored in array elements a[0], . . . , a[n – 1], and item of
the same type as the array elements.

Return: found = true and loc = position of item if the search is
successful; otherwise, found is false.

----------------------------------------------------------------------------------*/
1.  Set found = false.
2.  Set first = 0.
3.  Set last = n – 1.
4.  While first < last and not found do the following:
5. Calculate loc = (first + last) / 2.
6. If item < a[loc] then
7. Set last = loc – 1. // search first half
8. Else if item > a[loc] then
9. Set first = loc + 1. // search last half
10. Else

Set found = true. // item found

Worst case:  Item not in the list:
TB(n) = O(log2n)



6.  Commonly-used computing times:
O(log2log2n), O(log2n), O(n), O(nlog2n), O(n2), O(n3), and O(2n)

See the table on p. 7-43 and graphs on p. 7-44 for a comparison of these.

Table 7.1  Common Computing Time Functions
log2 log2 n log2 n     n  n  log2 n    n 2     n 3      2 n

  — 0 1    0     1        1               2
0 1 2    2     4        8               4
1 2 4    8    16      64              16
1.58 3 8  24    64     512            256
2 4 16  64   256   4096         65536
2.32 5 32 160 1024 32768 4294967296
2.6 6 64 384 4096 2.6 × 105 1.85 × 1019

3 8 256 2.05 × 103 6.55 × 104 1.68 × 107 1.16 × 1077

3.32 10 1024 1.02 × 104 1.05 × 106 1.07 × 109 1.8 × 10308

4.32 20 1048576 2.1 × 107 1.1× 1012 1.15 × 1018 6.7 × 10315652



7.  Computing times of Recursive Algorithms

Have to solve a recurrence relation.

Example:  Towers of Hanoi

void Move(int n,
          char source, char destination, char spare)
{
  if (n <= 1)                      // anchor
    cout << "Move the top disk from " << source
         << " to " << destination << endl;
  else
  {                                // inductive case
    Move(n-1, source, spare, destination);
    Move(1, source, destination, spare);
    Move(n-1, spare, destination, source);
  }
}

T(n) = O(2n)


