VIIl. Algorithm Complexity (Chap. 7)

Measuring the Efficiency of Algorithms: (8 7.4)

1. What to measure?
Space utilization: amount of memory required
Time efficiency: amount of time required to process the data.

— Depends on many factors: size of input, speed of machine, quality of source code,
quality of compiler.

Since most of these factors vary from one machine/compiler to another, we count the
number of times instructions are executed. Thus, we measure computing time as:

T(n) = the computing time of an algorithm for input of sizen
= the number of times the instructions are executed.

2. Example: See ALGORITHM TO CALCULATE MEAN on page 350

[* Algorithm to find the mean of n real numbers.

Recelve: Aninteger n3 1 and an array x[0], . .., x[n-1] of real numbers
Return: The mean of x[0], . . ., X[n—1]

1. Initialize sum to O.

2. Initialize index variablei to 0.

3. Whilei < ndo the following:

4, a. Add x[i] to sum.

5. b. Incrementi by 1.

6. Calculate and return mean = sum/ n.

T(n)=3n+4

3. Definition of "big-O notation: The computing time of an algorithm is said to have order
of magnitude f(n), written T(n) is O(f(n))
if thereissome constant C such that
T(n) £ C-f(n) for al sufficiently large values of n.

We also say, the complexity of the algorithm is O(f(n)).

Example: For the Mean-Calculation Algorithm:
T(n) is O(n)

4. The arrangement of the input items may affect the computing time. For example, it may
take more time to sort alist of element that are nearly in order than for one that are
completely out of order. We might measure it in the best case or in the worst case or try
for the average. Usually best-case isn't very informative, average-case is too difficult to
calculate; so we usually measure worst-case performance.

5. Example:
a. LINEAR SEARCH ALGORITHM on p. 354
[* Algorithm to perform alinear search of thelist 0], ..., an-1].
Recelve: Aninteger n and alist of n elements stored in array elements

d0], ..., dn-1], and item of the same type asthe array elements.

Return: found = true and loc = position of item if the search is successful;
otherwise, found isfalse.

1. Set found = false.

2. Setloc=0.

3. Whileloc < nand not found do the following:

4, If item = g[loc] then /[item found

5 Set found = true.

6 Else Il keep searching *)
Increment loc by 1.

Worst case: Item not in thelist:
T, (n) isO(n)

b. BINARY SEARCH ALGORITHM on p. 355
/= Algorithm to perform a binary search of thelist g0], ..., an—1]
in which the items are in ascending order.

Receive: Aninteger nand alist of n elements in ascending order
stored in array elements 0], . . ., an— 1], and item of
the same type as the array elements.

Return: found = true and loc = position of item if the search is
successful; otherwise, found isfalse.

Set found = false.
Set first = 0.
Set last = n—-1.
Whilefirst < last and not found do the following:
Calculateloc = (first + lagt) / 2.
If item < gloc] then
Setlast = loc - 1. /] search first half
Elseif item > gloc] then
Setfirst = loc + 1. Il search last half
Else
Set found = true. // item found

RO ~NoOO~AWNE

©

Worst case: Item not in thelist:
Tg(n) = O(log,n)

6. Commonly-used computing times:
O(logzlogzn), O(logzn), O(n), O(nlogzn), O(n?), O(n3), and O(2")
See the table on p. 7-43 and graphs on p. 7-44 for a comparison of these.

Table 7.1 Common Computing Time Functions

logologon logon n nlogon n2 n3 2N

— 0 1 0 1 1 2
0 1 2 2 4 8 4
1 2 4 8 16 64 16
1.58 3 8 24 64 512 256
2 4 16 64 256 4096 65536
2.32 5 32 160 1024 32768 4294967296
2.6 6 64 384 4096 267 10° 1.85° 1019
3 8 256 205" 108 655 104 1.68° 107 1.16° 1077
332 10 1024 1027 104 105" 106 107~ 109 1.8 10308
4.32 20 1048576 21 107 1.1° 1012 115" 1018 6.7~ 10315652

X bougx

: —Ezféf/"x"w' i

< 2 x b x, ke, bnglongx

d o a0 100

7. Computing times of Recursive Algorithms
Have to solve arecurrence relation.

Example: Towers of Hanoi

voi d Move(int n,
char source, char destination, char spare)

if (n<=1) /1 anchor
cout << "Move the top disk from" << source
<< " to " << destination << endl
el se
{ /1 inductive case
Move(n-1, source, spare, destination);
Move(1l, source, destination, spare);
Move(n-1, spare, destination, source);
}
}

T(n) = O(2")

