V1. Templates

A. Introduction.

The evolution of reusability/genericity — Read pp. 244-6

Standard Template Library
(STL)

) iterators)
containers algorithms

class libraries function libraries
A A
; dﬂ;ﬁt function
CIRR S templates
classes
overloaded
functions
user-defined
data types inline code
Data + Algorithms = Programs

Ficure 6.1 THE EvoLuTion OF REUSEABILITY/GENERICITY

Templates allow functions and classes to be parameterized, so that the type of data being
stored (or operated upon) is received viaa parameter. Templates thus provide a means of
writing code that is easier to reuse since one template definition can be used to create multiple
Instances of a class (or function), each storing (operating on) a different type of data.

The template mechanism is important and powerful. It isused throughout the Standard
Template Library (STL) to achieve genericity.

B. Function Templates

Main reason for using functions. Make pieces of code reusable by encapsulating them within
functions.

1. Example: Interchange problem: To interchange the values of two i nt variablesx and y.

Instead of inline code:

int tenp = Xx;
X =Y;
y = tenp;

write a function:

/* Function to interchange two integer variabl es.
Recei ve: | nteger variables first and second
Pass back: first and second wi th val ues interchanged.

void Swap(int & first, int & second)

int tenmp = first;
first = second;
second = tenp;

}

® Thisgivesageneral solution to the interchange problem, because this function can be
used to exchange the values of any two integer variables:

Swap(x, Y);
vaéb(w z),
Swap(a, b);

a. To interchange the values of two doubl e variables:

We can't use the preceding function. However, overloading allows usto provide
multiple definitions for the same function:

/* Function to interchange two doubl e vari abl es.
voi d Snap(double & first, double & second)

double tenp = first;
first = second;
second = tenp;

}

b. To interchange the values of two st r i ng variables
Again, we can overload function Swap() :
/* Function to interchange two string vari abl es.
voi d S/\a'p('st-ri ng& first, stringé& second)

string tenp = first;
first = second;
second = tenp;

}

c. And soon ... for other types of variables

Make aSwap library? OK for C++ predefined types, but can't use for user-defined types
such as Ti me. We would have to overload Swap() for each user-defined type:

/* Function to interchange two Tinevari abl es.
void Swap(Tine & first, Tine & second)
Time tenp = first; /'l assunes that =1is

first = second; /] overl oaded for Tine
second = tenp;

}

d. Observations:

— Thelogic in each function is exactly the same; the only difference isin the type of
the values being exchanged.

— |If we could pass the type as an argument, we could write a general solution that
could be used to exchange the values of any two variables.

3. The Template M echanism

It works by declaring atype parameter and using it in the function instead of a specific
type. Thisisdone using a different kind of parameter list.

A Swap Template

* A Swap tenpl ate for exchangi ng the val ues of any two
objects of the sane type, for which the assignnent
operation is defined.

Recei ve: Type paraneter [tem

first and second, two objects of the sane type.
Pass back: first and second with val ues interchanged.
Assunes: Assignnent (=) is defined for type Item

tenpl ate <typenane Itenp /'l <- the type paraneter
void Swap(ltem & first, Item & second)

| tem tenp;
temp = first;
first = second;
second = tenp;

}

Notes:

—Theword t enpl at e isa C++ keyword specifying that what follows is a pattern for a
function, not a function definition.

— Whereas “normal” parameters (and arguments) appear within parentheses, type
parameters (and arguments for class templates) appear within angle brackets (<> pairs).

— Originally, the keyword cl ass was used instead of t ypenane in atype-parameter list
— "class" asasynonym for "kind" or "category" and specifies the "type/kind" of types.

— Unlike other functions, atemplate function cannot be split acrossfiles, that is, we can't
put its prototype in a header file and its definition in an implementation file. It all goes
in the header file.

4. How is a Function Template Used?

<t ypenane |tenr namesl|t emasatype parameter — a parameter whose value will be
determined (by the compiler) from the type of the arguments when Swap() iscalled.

Example:
#i ncl ude " Swap. h"

int i1, i2:
Swap(il, i2):

doubl e dubl, dub2;
Swép'(d'ubl, dub?2);
str'ir'1g'str1, str2;
Swép'(s'trl, str2);
Time t1, t2;
Swap(tl, t2):

Using the Swap() template, the compiler will generate definitions of Swap()
in which the parameter | t emis replaced by i nt, doubl e, stri ng, and
Ti me.

l::> This single function template definition (stored in aheader file Swap. h) is
sufficient to interchange the values of any two variables, provided the assignment
operator is defined for their type.

(Simplified) general form:

tenpl ate <typenane TypeParam>
FunctionDefinition

or
tenpl ate <cl ass TypeParam>
FunctionDefinition
where TypeParam is a type-parameter naming the "generic" type of value(s) on
which the function operates, and FunctionDefinition isthe definition of the
function, using type TypeParam.

8]

5. A function template is only a pattern that describes how individual functions can be built
from given actual types. This process of constructing afunction is called instantiation.

We instantiated Swap() four times — once with typei nt , once with type doubl e, once
with type st ri ng, and once with type Ti me. In each instantiation, the type parameter is
said to be bound to the actual type passed to it.

A template thus serves as a pattern for the definition of an unlimited number of instances.
In and of itself, the template does nothing. For example, when the compiler encounters a
template like that for Swap(), it simply storesit but doesn't generate any machine
instructions. Later, when it encounters acall to Swap() like

Swap(intl, int2);
it generates an integer instance of Swap() :
void Swap(int & first, int & second)
int tenp = first;

first = second,
second = tenp;

}

For this to be possible, the compiler must "see" the actual definition of Swap() , and not
just its prototype. Thisiswhy:

* A function template cannot be split across two files (prototype in a header file and
definition in an implementation file.)

Algorithm for instantiation:

(1) Search parameter list of template function for type parameters
(2) If one is found, determine type of corresponding argument
(3) Bind these types

Example:

/* Function tenplate to find the | argest value of any type
(for which <is defined) stored in an array.
Recei ve: Type paraneter El enent Type
array of elenents of type El enent Type
nunkl enents, nunber of values in array
Return: Largest value in array

tenpl ate <typenane El enent Type>
El enent Type Largest (El enent Type array[], int nuntl enents)

El enent Type bi ggest = array[0];
for (int 1 =1; i < nunkEl enents; i ++)
I f (array[i] > biggest)
bi ggest = array[i];
return biggest;

}
int main ()
double x[10] = {1.1, 4.4, 3.3, 5.5, 2. 2};
cout << "Largest value in x is " << Largest(x, 5);

int nunf20] = {2, 3, 4, 1};
cout << "Largest value in numis

}

Execution:
Largest value in x is 5.5
Largest value in numis 4

<< Largest (num 4);

When compiler encounters Lar gest (x, 5), it:
1. Looks for a type parameter — finds El enent Type

2. Finds type of corresponding argument (x) — doubl e

3. Binds these types and generates an instance of Lar gest () :

doubl e Largest (double array[], int nuntl enents)

doubl e bi ggest = array[0];
for (int 1 =1; i < nunkl enents; i++)
I f (array[i] > biggest)
bi ggest = array[i];
return biggest;

}

Similarly, it generatesani nt version when Lar gest (num 4) isencountered.

C. Class Templates

1. What's wrong with t ypedef ?

Consider our St ack (and Queue) class:

/* Stack.h contains the declaration of class Stack.
Basi c operations:

const int STACK CAPACI TY = 128;
typedef int StackEl ement;

cl ass St ack

[***** Function Menbers ****x*/
publ i c:

[***** Data Menbers *****/

private:
St ackEl ement nyArray[STACK CAPAC TY];
I nt nyTop;

We can change the meaning of St ackEl enent throughout the class by changing the type
following thet ypedef .

Problems:

= This changes the header file, so any program/library that uses the class must be
recompiled.

e (More serious): A name declared using t ypedef can have only one meaning at atime.
If we needed two stacks with different elements types, e.g., a St ack of intsand a St ack
of strings, we would need to create two different stack classes with different names.

2. Creating a container class that is truly type-independent

Useaclass template, in which the classis parameterized so that it receives the type
of data stored in the class via a parameter much like function templates :

/* StackT.h contains a tenplate for class Stack
Recei ves: Type paranmeter StackEl ement
Basi ¢ operati ons:

const int STACK CAPACI TY = 128;

templ ate <typename StackEl ement >
cl ass Stack

{

[***** Function Menbers *****/
public:

/***** [)ata Ivenbers *****/
privat e:
St ackEl ement nyArray[STACK CAPACI TY] ;

int nyTop;

Here, the type parameter St ackEl enent can be thought of as a“blank” type that will be
filled in later.

In general:

tenpl ate <typenane TypeParam> or tenpl ate <cl ass TypeParam>

cl ass SomeClass

[l ... menbers of SomeClass ...

}

More than one type parameter may be specified:

tenpl ate <typenane TypeParami,..., typenanme TypeParamp>
cl ass SomeClass

..)

3. Instantiating a class
To use aclass template in a program/function/library:
| nstantiate it by using a declaration of the form

ClassName<Type> object
to pass Type as an argument to the class template definition.
Examples:

St ack<int> intSt;
St ack<string> stringSt;

Compiler will generate two distinct definitions of St ack — two instances — one for
I nt sand onefor st ri ngs.

4. Rules Governing Templ ates.

1. All definitions of member function outside the class declaration must be template
functions.

2. All uses of class name as a type must be parameterized.

3. Member functions must be defined in the same file as the class declaration.

a. Rules don't apply to prototypes of member functions, so no change to them.
[* StackT.h provides a Stack tenplate.

* Receives: Type paraneter StackEl enment

* Basi c operations:

* Constructor: Constructs an enpty stack

* enpty: Checks if a stack is enpty

* push: Modi fies a stack by adding a value at the top

* t op: Accesses the top stack val ue; |eaves stack unchanged
* pop: Modi fies a stack by renoving the value at the top
* di splay: D splays all the stack el enents

* dass lnvariant:

* 1. The stack elenents (if any) are stored in positions

* 0o, 1, . . ., nyTop of nyArray.

* 2. -1 <= nyTop <= STACK CAPACI TY

#i ncl ude <i ostreanp
usi ng nanespace std;

#i f ndef STACKT
#def i ne STACKT

const int STACK CAPACITY = 128;

tenpl ate <typenane StackEl enment >
cl ass Stack

{
[***** Function Menbers *****/
public:
I/l --- Constructor ---
St ack();
/Il --- 1s the Stack enpty? ---
bool enpty() const;
/Il --- Add a value to the stack ---
voi d push(const StackEl enment & val ue);
/'l --- Display values stored in the stack ---
voi d di spl ay(ostream & out) const;
/'l --- Return value at top of the stack ---
St ackEl enent top();
/'l --- Renove and return value at top of the stack ---
voi d pop();
b
#endi f

b. Definitions of member functions operations.

Rule 1: They must be defined as function templates:

tenpl ate <typenane StackEl enent >
[l ... definition of Stack()

tenmpl ate <typenanme St ackEl enent >
/[l ... definition of enpty()

templ ate <typename StackEl ement >
[l ... definition of push()

templ ate <typename StackEl ement >
[l ... definition of display()

templ ate <typename StackEl ement >
[l ... definition of top()

templ ate <typename StackEl ement >
[l ... definition of pop()

Rule 2: The class name St ack preceding the scope operator (: :) isused as the

name of a type and must therefore be parameterized:

tenpl ate <typenane StackEl enent >

inline Stack<StackEl ement >:: Stack(const StackEl enent & val ue)

{

[l ... body of Stack()

}

tenpl ate <typenane StackEl enent >

inline bool Stack<StackEl ement >::enpty(const StackEl enent & val ue)
{

[l ... body of push()

}

tenpl ate <typenane StackEl enment >
voi d St ack<StackEl ement >:: push(const StackEl ement & val ue)

{

[l ... body of push()

}

tenpl ate <typenane StackEl enent >

voi d St ack<StackEl ement >: : di spl ay()
{

/1 ... body of display()

}

tenpl ate <typenane StackEl enent >

St ackEl enment St ack<St ackEl ement >: : top()
{

/1 ... body of top()

}

tenpl ate <typenane StackEl enment >

void St ack<StackEl ement >: : pop();

Z/ ... body of pop()

Rule 3: These definitions must be placed within St ackT. h:

[* StackT.h provides a Stack tenplate.

#i f ndef STACKT
#def i ne STACKT

féhpl ate <typenane StackEl enment >
cl ass Stack

{

};'H end of class declaration
[***** Function Tenpl ates for Qperations *****/
[l--- Definition of Constructor

tenpl ate <typenane StackEl enment >
inline Stack<StackEl enment>:: Stack()

{ nyTop = -1; }
#endi f

c. Friend functions are also governed by the three rules.

For example, suppose we use oper at or << instead of di spl ay() for output:

® Prototype it within the class declaration as a friend:

[* StackT.h provides a Stack tenplate.

.. x|
const int STACK CAPACI TY = 128;
tenpl ate <typenane StackEl enent >
cl ass Stack
{
public:
/l--- Qutput operator -- docunentation omtted here

friend ostream & operat or<<(ostream & out,
const Stack<StackEl ement> & st);

'}5'// end of cl ass

® And defineit outside the class as a function template:

/] --- ostreamoutput ----------------------------

t empl at e<cl ass St ackEl enment >
ostream & oper at or <<(ostream & out,

const Stack<StackEl ement> & st)

for (int pos = st.nyTop; pos >= 0; pos--)
out << st.nyArray[pos] << endl;
return out;

}

® Since St ack isbeing used as atype to declare the type of st , it must be
parameterized.

5. Program to Test the St ack Template.

#i ncl ude <i ostreane
usi ng nanespace std/
#i ncl ude " St ackT. h"

int main()
St ack<int> intSt; // stack of ints
St ack<char > char St ; /] stack of chars
for (int i =1; i <= 4; i++)
intSt. push(i);
while (!lintSt.enpty()) Sample run:

i =intSt.top(); intSt.pop();
cout << i << endl;

}

for (char ch = "A; ch <="'D; ch++)
char St . push(ch);

>WOORLNWDS

while (!charSt.enpty())

ch = charSt.top(); charSt. pop();
cout << ch << endl;

}

Sample run:

>WOORLNWDS

6. An Alternative Version.

*** Templates may have more than one type parameter; they may also have ordinary
parameters.

/* StackT.h provides a Stack tenplate.
Recei ves: Type paraneter StackEl ement
| nteger myCapacity

#i f ndef STACKT
#def i ne STACKT

templ ate <typename StackEl ement, int myCapacity>
class Stack

publ i c:
/l... Prototypes of nenber (and friend) functions ..
privat e:

St ackEl ement myArray[nmyCapacity];

int nyTop;
1
[1... Definitions of nenber (and friend) functions ..
#endi f

Program to Test the St ack Template.

#i ncl ude <i ostreane
usi ng nanmespace std;
#i ncl ude " St ackT. h"

int main()

St ack<int, 10> intSt;
St ack<char, 3> char St;

/[l ... sane as earlier
}
Sample run:
4
3
2
1
*** Stack is full -- can't add new val ue ***
Decl are a | arger one.
C
B

A

D. More About Function Templates

Like class templates, more than one type parameter is allowed

tenpl ate <typenane TypeParami, typenane TypeParamy,
FunctionDefinition

Each of the type parameters must appear at least once in the parameter list of the
function. Why? Because the compiler must be able to determine the actual type that
corresponds to each type parameter from a call to that function.

a. Example:
/* Function tenplate to convert a value of any type to
anot her type
Recei ve: Type paraneters Typel and Type2
val uel of Type 1
Pass back: val ue2 of Type2

tenmpl ate <typename Typel, typenane Type2>
void Convert (Typel valuel, Type2 & val ue2)

val ue2 = static_cast<Type2>(val uel);

}

#i ncl ude <i ostreanp
usi ng nanespace std;

int main()

char a = 'a';

int ia;

Convert(a, ia);

cout << a <<" " << ja << endl;

doubl e x = 3. 14;

int ix;

Convert(x, 1iX);

cout << Xx << " " << X << endl;

}

Sample run:

a 97
3.14 3

b. The following version of function template Convert would not be allowed:

tenpl ate <typenane Typel, typenane Type2>
Type2 Convert (Typel valuel) // Error--Type2 not used in
/| parameter |ist
return static_cast <Type2>(val uel);

}

c. One possible solution would be to provide a dummy second parameter indicating the type
of the return value:

tenpl ate <typenane Typel, typenanme Type2>
Type2 Convert(Typel val uel, Type2 value2 = Type2(0))
{

return static_cast <Type2>(val uel);

}

Function call:

doubl e x = 3. 14;
int ix = Convert(x, 0);

A (Substantial) Application of Template Functions: QuickSort (811.3)

The quicksort method of sorting is one of the fastest methods of sorting and is most often
implemented by arecursive algorithm. The basic idea of quicksort is to choose some element
called a pivot and then perform a sequence of exchanges so that all elements that are less than
this pivot areto its left and all elements that are greater than the pivot areto itsright. This
correctly positions the pivot and divides the (sub)list into two smaller sublists, each of which
may then be sorted independently in the same way. Thisdivide-and-conquer strategy leads
naturally to arecursive sorting algorithm.

To illustrate this splitting of alist into two sublists, consider the following list of integers:

50, 30, 20, 80, 90, 70, 95, 85, 10, 15, 75, 25

If we select the first number as the pivot, we must rearrange the list so that 30, 20, 10, 15,
and 25 are placed before 50, and 80, 90, 70, 95, 85, and 75 are placed after it. To carry out
this rearrangement, we search from the right end of the list for an element less than 50 and
from the left end for an item greater than 50.

We then resume the search from the right for a number less than 50 and from the left for a
number greater than 50:

0] . 30 . 20 .25 (8D 7

0] . 30 . 20 . 25 . fI8] . 7

50] . 20 . 20 . 25 .ous oL o

Interchanging these gives

v v v
@"u 0]) _@_UUA 50

When we resume our search from the right for a number less than 50, we locate the value
10, which was found on the previous left-to-right search. This signals the end of the two
searches, and we interchange 50 and 10, giving

|o<m.:oA:s<|5_.wsAss."o.oo_"s.ao

The two underlined sublists now have the required properties. All elementsin the first sublist
are less than 50, and all those in the right sublist are greater than 50. Consequently, 50 has
been properly positioned.

Both the left sublist
10, 30, 20, 25, 15
and the right sublist
95, 85, 70, 90, 75, 80
can now be sorted independently. Each must be split by choosing and correctly positioning
one pivot element (the first) in each of them.

A function is needed to split alist of itemsin the array positions given by two parameters
| owand hi gh, denoting the beginning and end positions of the sublist, respectively. The
following function template carries out the desired splitting.

/'l Need Swap() and operator<<() tenpl ates

/[l Split rearranges x[first], ... , x[last] so that
/1l the pivot elenent is properly positioned at

/] position pos.

Il Recei ve: Type paraneter El enent Type

I vector x, indices first, |ast

I Pass back: Rearranged x, index pos

/

tenpl ate <cl ass El enment Type>

void Split(vector<E enent Type> & X,
int first, int last, int & pos)

}

El ement Type pivot = x[first]; // pivot el enent
int left = first, /'l index for |eft search
right = |last; /1 index for right search

while (left < right)
{
Il Search fromright for elenment <= pivot
while (x[right] > pivot)
right--;
/] Search fromleft for elenent > pivot
while (left <right & x[left] <= pivot)
| ef t ++;
/'l Interchange el enents if searches haven't net
if (left <right)
Swap(x[left], x[right]);

/| End of searches; place pivot in correct position
pos = right;

x[first] = x[pos];

X[pos] = pivot;

Given this function, a recursive function to sort alist is now easy to write.

» Thetrivial case occurs when the list being examined is empty or contains asingle
element, inwhich casethelistisin order, and nothing needs to be done.

» The nontrivial case occurs when the list contains multiple elements, in which case the list
can be sorted by:
a. Splitting the list into two sublists;
b. Recursively sorting the left sublist; and
. Recursively sorting the right sublist.

This algorithm is encoded as the following function template Qui ckSort () :

/1 QU CKSORT

Il Recei ve: Type paraneter El enent Type

I vector x with elenments of type El enent Type
I I ndices first and | ast

Il Pass back: Rearranged x with x[first], ..., X last]

I I n ascendi ng order

I e

tenpl ate <cl ass El ement Type>

voi d Qui cksort (vector<El enent Type> & x, int first, int |ast)
{
I nt pos; /1 final position of pivot
if (first <last) // list has nore than one el enent
{
[/ Split into two sublists
Split(x, first, last, pos);
/] Sort left sublist
Qui cksort(x, first, pos - 1);
/1l Sort right subli st
Qui cksort(x, pos + 1, last);

/] else list has 0 or 1 el enent and
/'l requires no sorting

}

/1 Function tenplate interface to QuickSort ()

Il Recei ve: Type paraneter El enent Type

I vector x with elenents of type El enent Type
I Pass back: x sorted in ascendi ng order.

I e P

tenpl ate <typenane El enent Type>
voi d (Bort (vect or <El enent Type> & Xx)
Qui cksort(x, 1, x.size() - 1);

Driver Program:

#i ncl ude <i ostreanr
usi ng nanespace std;
#i ncl ude "SortLi brary"

i nt main()

int ints[] = {555, 33, 444, 22, 222, 777, 1, 66},
vector<int> intvec(ints, ints + 8);

QSort(intvec);

cout << "Sorted list of integers:\n" << intvec << endl;

doubl e dubs[] = {55.5, 3.3, 44.4, 2.2, 22.2, 77.7, 0.1};
vect or <doubl e> dubvec(dubs, dubs + 7);

QSort (dubvec);

cout << "Sorted list of doubles:\n" << dubvec, endl;

}

Execution:

Sorted list of integers:
1 22 33 66 222 444 555 777

Sorted |ist of doubles:
0.1 2.2 3.3 22.2 44.4 5K55.5 77.7

E. STL's Containers (pp. 265 - 267)

STL (the Standard Template Library) isalibrary of class and function templates based on

work in generic programming done by Alex Stepanov and Meng L ee of the Hewlett Packard
L aboratories in the early 1990s. It has three components:

1. Containers. Generic "off-the-shelf" class templates for storing collections of data
2. Algorithms. Generic "off-the-shelf" function templates for operating on containers
3. Iterators: Generalized "smart" pointers that allow algorithms to operate on almost

any container
“ﬂ\,ﬁ
Container Classes @hlgﬂﬂlhms

In 1994, STL was adopted as a standard part of C++.

There are 10 containersin STL:

Kind of container Containers
Sequential: deque, list, vector
Associative: map, mnultimp, nultiset, set
Adapters: priority queue, queue, stack

F.vector (Lab7and86.4)

InLab 7, we've looked at the vect or classtemplatein STL and some of the important
vect or operations:

Constructors:
vector<T> v,

/'l enpty vector
v1(100), /

/

/

/

/ contains 100 el enents of type T

/ contains 100 copi es of val

/ contains copies of elenments in
nmenory | ocations fptr up to Iptr

v2(100, val),
v3(fptr,Iptr);

Copy constructor
Destructor

v.capaci ty() Number of elements v can contain without growing

V. size() Number of elements v actually contains
V. reserve(n) Increase capacity (but not size) ton
v.enmpty() Check if v isempty
Assignment (=) e.g., vl = v2;
Relational operators L exicographic order is used
v.front(), v. back(), Access first value, last value,

v[i], v.at(i) 1-th value without / with range checking

(at throws out-of-range exception — see p. 272)

v. push_back(val) Add val at end
V. pop_back() Remove value at end
V. swap(vl) Swap contents with those of vector v1

The other operations require knowledge of iterators..

Examples:
v. begi n() Returns iterator positioned at first element
v.end() Returns iterator positioned immediately after last element
v.insert(it, val) Insertsval at position specified by iterator 1t
v.erase(1t) Removes the element at position specified by iterator 1t.

Note: insert() movesall the array elements from position it and following one
position to the right to make room for the new element.
er ase() moves all the array elements from position i1t and following one
position to the left to close the gap.

An iterator declaration for vect or s has the form:
vector<T>::iterator It
Example: Function to display the values stored in avect or of doubl es:

ostream & operat or <<(ostream & out, const vector<doubl e> & v)

for (int i = 0; i < v.size(); i++)
out << v[i] << " ",
return out;

}

or using an iterator:

ostream & operator<<(ostream & out, vector<double> & v)

= v. begin();

for (vector<double>::iterator i
it !'= v.end(); it++)

~t ~—+

out << *|It << " "
return out;

}

G. A New (But Unnecessary) Revision of Our St ack Class Template

Our class St ack still has one deficiency, namely, that the stack can become full; it isn't
dynamic in that it can grow when necessary. However, we could use vect or as a container
for the stack elements since it can grow automatically as needed, and the push_back() and
pop_back() operations are perfect for stacks.

#i f ndef STACK VEC
#defi ne STACK VEC

#i ncl ude <i ostreany
#i ncl ude <vector>
usi ng nanmespace std;

t enpl at e<t ypenane St ackEl enent >
cl ass Stack

[***** Function Menbers ****x/
publ i c:
/1 Don't need constructor -- let vector's do it
bool empty() const;
voi d push(const StackEl ement & val ue);
voi d di spl ay(ostream & out) const;
St ackEl enent top() const;

voi d pop();

/***** mta MEITbeI‘S *****/

private:
vect or <St ackEl ement > myVect or; /] vector to store elenents
/1 don't need nyTop -- back of vector is top of stack

}; /1 end of class declaration

//--- Definition of enpty operation
tenpl ate <typenane StackEl enent >
i nline bool Stack<StackEl enent>::enpty() const

{
return myVector.enmpty();

[l--- Definition of push operation
tenpl ate <typenane StackEl enent >
voi d Stack<St ackEl ement >: : push(const StackEl enent & val ue)

myVect or. push_back(val ue);

[l--- Definition of display operation
tenpl ate <typenane StackEl enent >
voi d Stack<St ackEl enent >: : di spl ay(ostream & out) const

for (int pos = nyVector.size() - 1; pos >= 0; pos--)
out << nyVector[pos] << endl;

/* or using a reverse iterator:
for (vector<StackEl enent>::reverse_iterator
pos = nyVector.rbegin(); pos != nyVector.rend(); pos++)
out << *pos << endl;
*/
}

[l--- Definition of top operation
tenpl ate <typenane StackEl enent >
St ackEl enent St ack<St ackEl enent>:: top() const

if (!nyVector.enpty())
return myVector. back();

/el se

cerr << "*** Stack is enpty ***\n"; }
}
[l--- Definition of pop operation

tenpl ate <typenane StackEl enent >
voi d Stack<St ackEl enent >:: pop()

if (!nyVector.enpty())
myVect or. pop_back();
el se

cerr << "*** Stack is enpty -- can't renove a value ***\n";
}
#endi f

Basically, all we have doneiswrapped avect or inside aclasstemplate and let it do all the
work. Our member functions are essentially just renamings of vect or member functions.

And there's really no need to do this, since STL has done it for us!

[27]
H. STL's st ack Container

STL includesa st ack container. Actually, it isan adapter (asindicated by the fact that its
type parameter is a container type), which means basically that it is aclassthat actsasa
wrapper around another class and provides a new user interface for that class.

A container adapter such as st ack uses the members of the encapsulated container to implement
what looks like a new container.

For ast ack<C>, Cmay be any container that supports push_back() and pop_back() ina
LIFO manner; in particular Cmay beavect or ,adeque, oral i st.

Basic operations:

Constructor st ack< container<T> > st; createsan empty stack st of
elements of type T; it uses acontainer<T> to store the elements.,

Note 1. The space between the two >s must be there to avoid confusing the compiler
(elseit treatsit as >>); for example, stack< vector<int> > s;
not stack< vector<int>> s;

Note 2. The default container isdeque; that is, if "container" isomitted asin
st ack<T> st ; adeque<T> will be used to store the stack elements
Thus st ack<T> st ; isequivalent to st ack< deque<T> > st;

Destructor
Assignment, relational Operators

si ze(),enpty(), top(), push(), pop()

Example: Conversion to base two (where our whole discussion of stacks began)
(See Fig. 6.8 on p. 300)

/* Programthat uses a stack to convert the base-ten
* representation of a positive integer to base two.
* Uses the standard C++ stack contai ner.

*
* lnput: A positive integer
* Qutput: Base-two representation of the nunber

***/

#i ncl ude <i ostreanr
/I #i ncl ude <deque> -- Don't need for default container,
/1 but do need if sone other container is used
#i ncl ude <stack>
usi ng nanespace std;

int main()

unsi gned nunber, /'l the nunber to be converted
remai nder ; /'l remai nder when nunber is divided by 2
st ack<unsi gned> st ackCf Rernai nder s;
/'l stack of remainders
char response; /'l user response

cout << "Enter positive integer to convert:
cin >> nunber;

whil e (nunber !'= 0)

remai nder = nunber % 2;
st ackOf Remai nder s. push(renai nder) ;
nunber /= 2,

}

cout << "Base two representation: ";
whil e (!stackOr Remai nders. enpty())

{

remai nder = stackO Renmai nders. top();
st ackOf Remai nder s. pop() ;
cout << renmi nder;

}

cout << endl:
cout << "\'nMore (Yor N)? "
cin >> response;

while (response == 'Y || response == "y");
}
I. STL's queue Container

Container type Cmay bel i st or deque. Why not vect or ?
It can't remove at the front efficiently!

The default container is deque.

gueue has same member functions and operations as st ack except:

front () (instead of t op()) retrievesfront item
pop() removes front item

push() addsitem at back

back() retrievesrear item

Example

#i ncl ude <string>
#i ncl ude <queue>
usi ng nanespace std;

int main()

queue<i nt> qint;
gqueue<string> gstr;

/[Qutput nunber of values stored in qgint
cout << gint.size() << endl;

// Add 4 positive even integers to gint
for (int i =1; i <= 4; i++)
gi nt. push(2*i);

/'l Change front value of qgint to 123;
gint.front() = 123;

cout << gint.size() << endl;

/1 Dunp contents of qint
while (!qgint.enpty())
{

cout << gint.front() << " "
gi nt. pop();
cout << endl;
/1 Put strings in gstr and dunp it

gstr.push("STL is"); qgstr.push("inpressive!\n");
while (!gstr.enpty())
{

cout << gstr.front() << ' ';
gstr. pop();

Output:

0

4

123 4 6 8

STL is impressive!

J. Deques (pp. 294-297)

Asan ADT, adeque, which is an abbreviation for double-ended queue, is a sequential
container that functions like a queue (or a stack) on both ends. More precisely, itisan

ordered collection of dataitems with the property that items can be added and removed only
at the ends. Basic operations are:

= Construct a deque (usually empty):

= Check if the deque is empty

e Push_front: Add an element at the front of the deque

e Push_back: Add an element at the back of the deque

e Front: Retrieve the element at the front of the deque
= Back: Retrieve the element at the back of the deque
= Pop_front:: Remove the element at the front of the deque
= Pop_back:: Remove the element at the back of the deque

STL'sdeque<T> class template:

= Hasthe same operationsas vect or <T> except that thereisno
capacity() andnoreserve()
= Has two new operations:

d.push_front (value); Pushacopy of value at the front of d

d.pop_front(value); Removevalue atthefront of d

= Has several operations like vect or 's that are not defined for deques as ADTS:
[], insert and delete at arbitrary pointsin the list, same kind of iterators.
But, insertion and deletion are very inefficient , however, and in fact take longer
than for vect or s. See pp. 296-7 for an explanation of why thisis,

One of the bad features of the vect or container isthat when its capacity must be increased, it
must copy all the objects from the old vector to the new vector. Then it must destroy each
object in the old vector. Thisisalot of overhead! With deque this copying, creating, and
destroying is avoided. Once an object is constructed, it can stay in the same memory locations
aslong asit exists (provided insertions and del etions take place at the ends of the deque).

The reason for thisisthat unlike vect or s, adeque is not stored in asingle varying-sized
block of memory, but rather in a collection of fixed-size blocks (typically, 4K bytes). One of
its data membersis essentially an array nap whose elements point to the locations of these
blocks. For example, if each block consisted of only five memory locations, we might
picture adeque containing 999, 888, 777, 666, 4, 3, 2, 1, 6, 5 in this order, from front to
back, as follows:

DataBlock 2
unused
unused
map 666 d[0] <——d. begi n()
; 777 d[1]
unused 888 d[2]
[0]| Block 24
[1] | Block 1 4 DataBlock 1
[2] [Block 3\\"> 999 |d[3]
unused 4 d[4]
: 3 d[5]
2 d[6]
1 d[7]
DataBlock 3
6 d[8]
5 d[9]
unused —— d. end()
unused
unused

When a data block gets full, anew oneis allocated and its address is added to map. When nap
getsfull, anew one is allocated and the current values are copied into the middle of it.

K. Bitsets and ValArrays (86.7 & 6.8)

The C++ standard includes bi t set asacontainer, butitisnotinSTL. A bitset is
an array whose elements are bits. It is much like an array whose elements are of type
bool , but unlike arrays, it does provide operations for manipulating the bits stored in it.
They provide an excellent data structure to use to implement sets.

The standard C++ library also providestheval ar r ay classtemplate, which is designed to
carry out (mathematical) vector operations very efficiently. Thatis, val arr aysare
(mathematical) vectors that have been highly optimized for numeric computations.

B2
L. Algorithms in the STL (Standard Template Library) (87.5)

Another mgjor parts of STL isits collection of more than 80 generic algorithms. They are
not member functions of STL's container classes and do not access containers directly. Rather
they are stand-alone functions that operate on data by means of iterators . This makesit
possible to work with regular C-style arrays as well as containers. We illustrate one of these
algorithms here: sor t .

Sort 1: Using <

#i ncl ude <i ostreanp
#i ncl ude <al gorithne
usi ng nanespace std;

/1l Add our D splay() tenplate for arrays

I nt main()
int ints[] = {555, 33, 444, 22, 222, 777, 1, 66};
/'l To use sort, we nust supply start and "past-the-end" pointers
sort(ints, ints + 8);
cout << "Sorted list of integers:\n";

Di splay(lnts, 8);

doubl e dubs[] = {55.5, 3.3, 44.4, 2.2, 22.2, 77.7, 0.1};
sort (dubs, dubs + 7);

cout << "\nSorted list of doubles:\n";

Di spl ay(Dubs, 7);

string strs[] = {"good", "norning", "cpsc", "186", "class"},;
sort(strs, strs + 5);

cout << "\nSorted list of strings:\n";

Di splay(strs, 5);

Sorted |ist of
1 22 33 66

Sorted |ist of
0.1 2.2 3.3

Sorted |ist of
186 cl ass

cpsc

I nt egers:

222 444 555 777
doubl es:

22.2 44.4 55.5 T17.7

strings:
good norning

Sort 2: Supplying a"less-than" function to use in comparing elements

#i ncl ude <i ostream h>
#incl ude <string>
#i ncl ude <al gorithne

/1 Add our Display() function tenplate for arrays

bool IntLessThan(int a, int b)
{ return a > b; }

bool DubLessThan(doubl e a, double b)
{ return a > b; }

bool StrLessThan(string a, string b)
{ return!(a <b) & !(a == Db); }

I nt main()

int ints[] = {555, 33, 444, 22, 222, 777, 1, 66};
sort(ints, ints + 8, IntLessThan);

cout << "Sorted list of integers:\n";

Di splay(ints, 8);

doubl e dubs[] = {55.5, 3.3, 44.4, 2.2, 22.2, 77.7, 0.1};
sort (dubs, dubs + 7, DubLessThan);

cout << "\nSorted list of doubles:\n";

Di spl ay(dubs, 7);

string strs[] = {"good", "norning", "cpsc", "186", "class"};

sort(strs, strs + 5, StrlLessThan);
cout << "\nSorted list of strings:\n";
Di splay(strs, 5);

Sorted |list of integers:
777 555 444 222 66 33 22 1

Sorted |ist of doubl es:
77.7 55.5 44.4 22.2 3.3 2.2 0.1

Sorted |list of strings:
norning good cpsc class 186

Sort 3: Sorting a vector of stacks using < (defined for stacks)

#1 ncl ude <iostreanp
#1 ncl ude <al gorithnp
#1 ncl ude <vector>
usi ng nanmespace std;
#incl ude "StackT. h"

/* Add operator<() to our Stack class tenplate as a nenber
function with one Stack operand or as a friend function with
two Stacks as operands.

O because of how we're defining < for Stacks here,

stl < st2 i f top of stl < top of st2
we can use the top() access function and nake operator<()
an ordinary function */

tenpl ate <typenane StackEl enent >

bool operator<(const Stack<StackEl enment> & a,
const Stack<StackEl enent> & b)

{ return a.top() < b.top();}

int main()
vector< Stack<int> > st(4); /'l vector of 4 stacks of ints

st[0].push(10); st[O].push(20);

st[1]. push(30);

st[2].push(50); st[2].push(60);

st[3].push(l); st[3].push(999); st[3].push(3);

sort (st.begin(), st.end());

for (int i =0; i < 4; i++)

{
cout << "Stack " << i << ":\n";
st[i].display();
cout << endl;

}

}

Output

Stack O:
3

999

1

Stack 1:
20
10

Stack 2:
30

Stack 3:
70
50

