
1

V. Queues

[Most of the details about queues are left for to read about and work out in Lab 6.]

Def. As a data structure, a queue is an ordered collection of data items with the property that
items can be removed only at one end, called the front of the queue, and items can be
added only at the other end, called the back of the queue. Basic operations are:

 construct: Create an empty queue
empty: Check if a queue is empty
addQ: Add a value at the back of the queue

 front: Retrieve the value at the front of the queue
removeQ: Remove the value at the front of the queue

Whereas a stack is a Last-In-First-Out (LIFO) structure, a queue is a First-In-First-Out
(FIFO) or First-Come-First-Served (FCFS) structure.

2. Examples:
a. I/O buffers: queues, scrolls, deques

→ From a file: (queue)

Infile >> X;

X

Input
Buffer

CPU

MemoryDisk

→ Interactively: (scroll — queue on one end, stack on the other)

cin >> X;

Keyboard

X

Input
Buffer

Memory

2

→ Screen handling: (deque — double-ended queue)

b. Scheduling queues in a multi-user computer system:
→ Printer queue: When files are submitted to a printer, they are placed in the printer

queue. The printer software executes an algorithm something like:

for (;;)
{

while (printerQueue.empty())
sleep 1;

printFile = printerQueue.removeQ();
Print(printFile);

}

→ Other Queues:
Resident queue: On disk, waiting for memory

Ready queue: In memory — has everything it needs to run, except the CPU

Suspended queue: Waiting for I/O transfer or to be reassigned the CPU

3

c. CPU Scheduling: Probably uses a priority queue: Items with lower priority are
 behind all those with higher priority.

(Usually a new item is inserted behind those with the same priority.)

