
1

IV. Stacks

A. Introduction
1. Consider the 4 problems on pp. 170-1

(1) Model the discard pile in a card game

(2) Model a railroad switching yard

(3) Parentheses checker

(4) Calculate and display base-two representation

26 = ????????2

Remainders are generated in right-to-left order. We need to "stack" them up, then
print them out from top to bottom.

Need a "last-discarded-first-removed," "last-pushed-onto-first-removed," "last-
stored-first-removed, " "last-generated-first-displayed" structured data type.

In summary ... a LIFO (last-in-first-out) structure.

2

2. Definition of a stack as an ADT (abstract data type):

A stack is an ordered collection of data items in which access is possible
only at one end, called the top of the stack. Its basic operations are:

1. Construct a stack (usually empty)
2. Check if stack is empty
3. Push: Add an element at the top of the stack

 4. Top: Retrieve the top element of the stack
 5. Pop: Remove the top element of the stack

The terminology comes from a spring-loaded stack of plates in a cafeteria:
• Adding a plate pushed those below it are pushed down in the stack
• When a plate is removed from the stack, those below it pop up one

position.

3. If we had a stack class we could use it to easily develop a short program for the base-
conversion problem.

BASE-CONVERSION ALGORITHM (See p. 171-2)
/* This algorithm displays the base-2 representation of a base-10 number.

Receive: a positive integer number.
Output: the base-two representation of number.

---*/
1. Create an empty stack to hold the remainders.

2. While number ≠ 0:
a. Calculate the remainder that results when number is divided by 2.
b. Push remainder onto the stack of remainders.
c. Replace number by the integer quotient of number divided by 2.

3. While the stack of remainders is not empty:
a. Retrieve and remove the remainder from the top of the stack of remainders.
b. Display remainder.

3

4

/* Program that uses a stack to convert the base-ten
 * representation of a positive integer to base two.
 *
 * Input: A positive integer
 * Output: Base-two representation of the number
 ***/

#include "Stack.h" // our own -- <stack> for STL version
#include <iostream>
using namespace std;

int main()
{
 unsigned number, // the number to be converted
 remainder; // remainder when number is divided by 2
 Stack stackOfRemainders; // stack of remainders
 char response; // user response

 do
 {
 cout << "Enter positive integer to convert: ";
 cin >> number;

 while (number != 0)
 {
 remainder = number % 2;
 stackOfRemainders.push(remainder);
 number /= 2;
 }

 cout << "Base-two representation: ";
 while (!stackOfRemainders.empty())
 {
 remainder = stackOfRemainders.top();
 stackOfRemainders.pop();
 cout << remainder;
 }

 cout << endl;
 cout << "\nMore (Y or N)? ";
 cin >> response;
 }
 while (response == 'Y' || response == 'y');
}

5

B. Building a Stack Class

Two steps:

1. Design the class; and
2. Implement the class.

1. Designing a Stack Class

Designing a class consists of identifying those operations that are needed to manipulate the
"real-world" object being modeled by the class. Time invested in this design phase will pay
off, because it results in a well-planned class that is easy to use.

Note: The operations are described independently of how the class will be implemented.
At this point, we have no idea what data members will be available, so the operations
must be described in some manner that does not depend on any particular
representation of the object.

The resulting specification then constitutes the "blueprint" for building the class.

From definition of stack as ADT, we must have (at least) the following operations:

• Construction: Initializes an empty stack.)

• Empty operation: Examines a stack and return false or true depending on
whether the stack contains any values:

• Push operation: Modifies a stack by adding a value at the top of the stack:

• Top operation: Retrieves the value at the top of the stack:

• Pop operation: Modifies a stack by removing the value at the top of the stack:

To help with debugging, add early on:

• Output: Displays all the elements stored in the stack.

6

2. Implementing a Stack Class

Two steps:

1. Define data members.
2. Define the operations

a. Selecting Data Members.

A stack must store a collection of values, so we begin by considering what kind of storage
structure(s) to use.

Attempt #1:

Use an array with the top of the stack at position 0.

 e.g., Push 75, Push 89, Push 64, Pop

0
1
2
3
4

75 0
1
2
3
4

890
1
2
3
4

Push 75 Push 89

75
0
1
2
3
4

89

Push 64

75

64 0
1
2
3
4

89
Pop

75

+ features: This models the operation of the stack of plates.
– features: Not efficient to shift the array elements up and down in the array.

7

Attempt #2 — A Better Approach

Instead of modeling the stack of plates, model a stack of books.

Push Push Pop

Keep the bottom of stack at position 0 and maintain a "pointer" myTop to the top of the
stack.

 e.g., Push 75, Push 89, Push 64, Pop

75
89

4
3
2
1
0

Push 75 Push 89

75
89

Push 64

75

64

Pop
4
3
2
1
0

4
3
2
1
0

4
3
2
1
0

4
3
2
1
0

89
75

64

myTop→
myTop→

myTop→
myTop→

myTop→

myTop = –1 myTop = 0 myTop = 1 myTop = 2 myTop = 1

Note: No moving of array elements.

8

So, we can begin the declaration of our class by selecting data members:

• Provide an array data member to hold the stack elements.

• Provide a constant data member to refer to the capacity of the array.

• Provide an integer data member to indicate the top of the stack.

Problems: We need an array declaration of the form

ArrayElementType myArray[ARRAYCAPACITY];

— What type should be used?

Solution (for now): Use the typedef mechanism:

typedef int StackElement;
// put this before the class declaration

 — What about the capacity?

const int STACK_CAPACITY = 128;
// put this before the class declaration

— Then declare the array as a data member in the private section:

StackElement myArray[STACK_CAPACITY];

Notes:
1. The typedef makes StackElement a synonym for int. Putting it outside the

class makes it accessible throughout the class and in any file that #includes
Stack.h. If in the future we want a stack of reals, or characters, or . . ., we need
only change the typedef:

typedef double StackElementType;
or

typedef char StackElementType;
or . . .

When the class library is recompiled, the type of the array's elements will be
double or char or . . .

2. A more modern alternative that doesn't require using (and changing a typedef is to
use the template mechanism to build a Stack class whose element type is left
unspecified. The element type is then passed as a special kind of parameter at
compile time. We'll describe this soon. This is the approach used in the Standard
Template Library (STL).

9

3. Putting the typedef and declaration of STACK_CAPACITY ahead of the class
declaration makes these declarations easy to find when they need changing.

4. If the type StackElement or the constant STACK_CAPACITY were defined as
public members inside the class declaration, they could be accessed outside the class
but would require qualification:

Stack::STACK_CAPACITY
Stack::StackElement

5. If we were to make the constant STACK_CAPACITY a class member we would
probably make it a static data member:

static const int STACK_CAPACITY = 128;

This makes it a property of the class usable by all class objects, but they do not have
their own copies of STACK_CAPACITY.

So, we can begin writing Stack.h:
Stack.h

/* Stack.h provides a Stack class.
 *
 * Basic operations:
 * Constructor: Constructs an empty stack
 * empty: Checks if a stack is empty
 * push: Modifies a stack by adding a value at the top
 * top: Accesses the top stack value; leaves stack unchanged
 * pop: Modifies a stack by removing the value at the top
 * display: Displays all the stack elements
 * Class Invariant:
 * 1. The stack elements (if any) are stored in positions
 * 0, 1, . . ., myTop of myArray.
 * 2. -1 <= myTop < STACK_CAPACITY
 --*/

#ifndef STACK
#define STACK

const int STACK_CAPACITY = 128;
typedef int StackElement;

class Stack
{

/***** Function Members *****/
public:
 . . .

/***** Data Members *****/
private:
 StackElement myArray[STACK_CAPACITY];
 int myTop;

}; // end of class declaration
. . .

#endif

10

b. Function Members

• Constructor :

Simple enough to inline? Yes

class Stack
{
public:
/* --- Constructor ---

 Precondition: A stack has been declared.
 Postcondition: The stack has been constructed as an
 empty stack.
--*/

Stack();
 . . .

};// end of class declaration

inline Stack::Stack() {myTop = -1;}

A declaration

Stack S;

will construct S as follows:

S 0 1 2 3 4 . . . 127
myArray ? ? ? ? ? . . . ?

myTop -1

• empty:

Receives: Stack containing it as a function member (implicitly)
Returns: True if stack is empty, false otherwise.
Member function? Yes
const function? (Shouldn't alter data members?) Yes
Simple enough to inline? Yes

11

class Stack
{
public:
 . . .
/* --- Is the Stack empty? ---
 * Receive: stack containing this function (implicitly)
 * Returns: true if the Stack containing this function is empty
 * and false otherwise

**/

bool empty() const;
 . . .
};// end of class declaration

inline bool Stack::empty() const
{ return (myTop == -1); }

Test driver: Output
#include <iostream> s empty? true
using namespace std;
#include "Stack.h"
int main()
{
 Stack s;

 cout << boolalpha << "s empty? " << s.empty() << endl;
}

• push:

Receives: Stack containing it as a function member (implicitly)
 Value to be added to stack

Return: Modified Stack (implicitly)
Member function? Yes
const function? No
Simple enough to inline? Probably not

12

class Stack
{
public:
 . . .
/* --- Add a value to the stack ---
 *
 * Receive: The Stack containing this function (implicitly)
 * A value to be added to a Stack
 * Pass back: The Stack (implicitly), with value added at its
 * top, provided there's space
 * Output: "Stack full" message if no space for value
 ***/

void push(const StackElement & value);
 . . .

}; // end of class declaration

Definition In Stack.cpp

void Stack::push(const StackElement & value)
{
 if (myTop < STACK_CAPACITY - 1) // Preserve stack invariant
 {
 ++myTop;
 myArray[myTop] = value;
 } // or simply, myArray[++myTop] = value;
 else
 cerr << "*** Stack is full -- can't add new value ***\n"
 << "Must increase value of STACK_CAPACITY in Stack.h\n";
}

Add at bottom of driver:

for (int i = 1; i <= 128; i++) s.push(i);
cout << "Stack should now be full\n";
s.push(129);

Output
s empty? true
Stack should now be full
*** Stack is full -- can't add new value ***

13

• Output:
So we can test our operations.
Receives: Stack containing it as a function member (implicitly)
Output: Contents of Stack, from the top down.
Member function? Yes
const function? (Shouldn't alter data members?) Yes
Simple enough to inline? No

Prototype:
/* --- Display values stored in the stack ---
 *
 * Receive: The Stack containing this function (implicitly)
 * The ostream out
 * Output: The Stack's contents, from top down, to out
 ***/

void display(ostream & out) const;

Definition in Stack.cpp:
void Stack::display(ostream & out) const
{
 for (int i = myTop; i >= 0; i--)
 out << myArray[i] << endl;
}

Modify driver:
/*
for (int i = 1; i <= 128; i++) s.push(i);

cout << "Stack should now be full\n";
s.push(129);
*/
for (int i = 1; i <= 4; i++) s.push(2*i);
 cout << "Stack contents:\n";
s.display(cout);
cout << "s empty? " << s.empty() << endl;

Output
s empty? true
Stack contents:
8
6
4
2
s empty? false

14

• top:
Member function? Yes
const function? Yes
Simple enough to inline? Probably not

Prototype:
/* --- Return value at top of the stack ---
 *
 * Receive: The Stack containing this function (implicitly)
 * Return: The value at the top of the Stack, if nonempty
 * Output: "Stack empty" message if stack is empty
 ***/

StackElement top() const;

Definition (in Stack.cpp):

StackElement Stack::top() const
{
 if (myTop >= 0)
 return (myArray[myTop]);
 cerr << "*** Stack is empty ***\n";
}

Add to driver at bottom:
cout << "Top value: " << s.top() << endl;

Output
Stack contents:
8
6
4
2
s empty? false
Top value: 8

15

• pop:
Member function? Yes
const function? No
Simple enough to inline? Probably not

Prototype:
/* --- Remove value at top of the stack ---
 *
 * Receive: The Stack containing this function (implicitly)
 * Pass back: The Stack containing this function (implicitly)
 * with its top value (if any) removed
 * Output: "Stack-empty" message if stack is empty.
 ***/

void pop();

Definition (in Stack.cpp):

void Stack::pop()
{
 if (myTop >= 0) // Preserve stack invariant
 myTop--;
 else
 cerr << "*** Stack is empty -- can't remove a value ***\n";
}

Add to driver at bottom:
while (!s.empty())
{
 cout << "Popping " << s.top() << endl;
 s.pop();
}
cout << "s empty? " << s.empty() << endl;

Output
Stack contents:
8
6
4
2
s empty? false
Top value: 8
Popping 8
Popping 6
Popping 4
Popping 2
s empty? true

16

C. Two Applications of Stacks

Use of Stacks in Function Calls
Whenever a function begins execution (i.e., is activated), an activation record (or stack
frame) is created to store the current environment for that function. Its contents include:

parameters

caller's state information (saved)
(e.g., contents of registers, return address)

local variables

temporary storage

What kind of data structure should be used to store these when a function calls
other functions and interrupts its own execution so that they can be recovered and
the system reset when the function resumes execution?

Clearly need LIFO behavior. (Obviously necessary for recursive functions.)
 So use a stack. Since it is manipulated at run-time, it is called the run-time stack.

What happens when a function is called:

(1) Push a copy of its activation record onto the run-time stack
(2) Copy its arguments into the parameter spaces
(3) Transfer control to the address of the function's body

So the top activation record in the run-time stack is always that of the function
currently executing.

What happens when a function terminates?

(1) Pop activation record of terminated function from the run-time stack
(2) Use new top activiation record to restore the environment of the interrupted

function and resume execution of it.

17

Examples:
. . .
int main()
{ . . .

f2(...);
f3(...);

}

void f1(...) {. . .}

void f2(...) {... f1(...); ...}

void f3(...) {... f2(...); ...}

int factorial(int n)
{ if (n < 2)

return 1;
else

return n * factorial(n-1);
}

What happens to the run-time stack when the
following statement executes?

int answer = factorial(4);

This pushing and popping of the run-time stack is the real overhead associated with
function calls that inline functions avoid by replacing the function call with the body of the
function.

Application to Reverse Polish Notation

1. What is RPN?
A notation for arithmetic expressions in which operators are written after the operands.
Expressions can be written without using parentheses.
Developed by Polish logician, Jan Lukasiewics, in 1950's

Infix notation: operators written between the operands
Postfix " (RPN): operators written after the operands
Prefix " : operators written before the operands

Examples:
INFIX RPN (POSTFIX) PREFIX

A + B A B + + A B
A * B + C A B * C + + * A B C
A * (B + C) A B C + * * A + B C
A – (B – (C – D)) A B C D - - - - A - B - C D
A – B – C – D A B - C - D - - - - A B C D

18

2. Evaluating RPN Expressions

a. "By hand": Underlining technique:

Scan the expression from left to right to find an operator. Locate ("underline") the last
two preceding operands and combine them using this operator. Repeat this until the end
of the expression is reached.

Example: 2 3 4 + 5 6 - - *

 → 2 3 4 + 5 6 - - * → 2 7 5 6 - - *

 → 2 7 5 6 - - * → 2 7 -1 - *

 → 2 7 -1 - * → 2 8 * → 2 8 * → 16

b. Algorithm — using a stack of operands

ALGORITHM TO EVALUATE RPN EXPRESSIONS

 Receive: An RPN expression.
Return: A stack whose top element is the value of the RPN expression

(unless an error occurred).
Note: Uses a stack to store operands.
--

1. Initialize an empty stack.

2. Repeat the following until the end of the expression is encountered:

a. Get the next token (constant, variable, arithmetic operator) in the RPN
expression.

b. If the token is an operand, push it onto the stack. If it is an operator, then do
 the following:

 (i) Pop the top two values from the stack. (If the stack does not contain two
 items, an error due to a malformed RPN expression has occurred, and
 evaluation is terminated.)

 (ii) Apply the operator to these two values.

 (iii) Push the resulting value back onto the stack.

3. When the end of the expression is encountered, its value is on top of the stack (and,
 in fact, must be the only value in the stack).

19

Example: See p. 172.

To generate code, change (ii) and (iii) to:
 (ii') Generate code: LOAD operand1

 op operand2
STORE TEMP#

(iii') Push TEMP# onto stack.

Example: Generate code for A B + C D + *

20

 c. Unary minus causes problems — use different symbol

 Example: 5 3 - - → 5 3 - - → 5 -3 - → 8

5 3 - - → 5 3 - - → 2 - → -2

 We'll use a different symbol: 5 3 ~ - 5 3 - ~

3. Converting from Infix to RPN

a. "By hand": Represent infix expression as an expression tree:

A * B + C

*

+

A B

C

A * (B + C)

*

+A

B C

((A + B) * C) / (D - E)

C

A B

D E

*

+

/

-

 Traverse the tree in Left-Right-Parent order to get RPN
 Traverse tree in Parent-Left-Right order to get Prefix
 Traverse tree in Left-Parent-Right order to get Infix [must insert ()'s]

21

b. By hand: "Fully parenthesize-move-erase" method:
1. Fully parenthesize the expression.
2. Replace each right parenthesis by the corresponding operator.
3. Erase all left parentheses.

Examples:

A * B + C ((A * B) + C)→

→ ((A B * C + A B * C +→

A * (B + C) (A * (B + C))→

→ (A (B C + * A B C + *→

→

→

→((A + B) * C) / (D - E)

(((A B + C * (D E - /

 A B + C * D E - /

(((A + B) * C) / (D - E))

22

c. Algorithm — using a stack of operators

 ALGORITHM TO CONVERT AN INFIX EXPRESSION TO RPN

 Accepts: An infix expression.
 Output: The RPN expression.
 Note: Uses a stack to store operators.

1. Initialize an empty stack of operators.

2. While no error has occurred and the end of the infix expression has not been reached:

a. Get the next input Token (constant, variable, arithmetic operator, left
 parenthesis, right parenthesis) in the infix expression.

b. If Token is
 (i) a left parenthesis: Push it onto the stack.

 (ii) a right parenthesis: Pop and display stack elements until a left parenthesis is
encountered, but do not display it. (It is an error if the
stack becomes empty with no left parenthesis found.)

(iii) an operator: If the stack is empty or Token has a higher priority
than the top stack element, push Token onto the stack.

Otherwise, pop and display the top stack element; then
repeat the comparison of Token with the new
top stack item.

Note: A left parenthesis in the stack is assumed to have
a lower priority than that of operators.

(iv) an operand: Display it.

3. When the end of the infix expression is reached, pop and display stack items until the
 stack is empty.

23

