1\VV. Stacks

A. Introduction
1. Consider the 4 problems on pp. 170-1

(1) Model the discard pilein acard game

(2) Model arailroad switching yard

1 2 n
e W W

INRNNEREDS:V.AURERNNEREEE

ISl

(3) Parentheses checker
(4) Calculate and display base-two representation

26 = 77777772

Base-ten Base-two

A

-

0 R
2YT R
23R 0
2V6 R L

2713 R |0
2726

Remainders are generated in right-to-left order. We need to "stack" them up, then
print them out from top to bottom.

Need a"last-discarded-first-removed," "last-pushed-onto-first-removed," "last-
stored-first-removed, " "last-generated-first-displayed" structured data type.

In summary ... aLIFO (last-in-first-out) structure.

2. Definition of astack asan ADT (abstract data type):

A stackisan ordered collection of data items in which access is possible
only at one end, called the top of the stack. Its basic operations are:

1. Construct a stack (usually empty) e
2. Check if stack is empty S
3. Push: Add an element at the top of the stack T=——=:
4. Top: Retrieve the top element of the stack —
5. Pop: Remove the top element of the stack [—

The terminology comes from a spring-loaded stack of platesin a cafeteria:

» Adding a plate pushed those below it are pushed down in the stack

» When aplate is removed from the stack, those below it pop up one
position.

3. If we had a stack class we could useiit to I develop a short program for the base-
conversion problem.

BASE-CONVERSION ALGORITHM (Seep. 171-2)
[* This algorithm displays the base-2 representation of a base-10 number.

Receive: a positive integer number.
Output: the base-two representation of number.

1. Create an empty stack to hold the remainders.

2. While number * O:
a. Calculate the remainder that results when number is divided by 2.
b. Push remainder onto the stack of remainders.
c. Replace number by the integer quotient of number divided by 2.

3. While the stack of remainders is not empty:
a. Retrieve and remove the remainder from the top of the stack of remainders.
b. Display remainder.

Al

o
Fema A feu

1]

ol

(P

']

=

']

o
~1

/* Programthat uses a stack to convert the base-ten
* representation of a positive integer to base two.

* Input: A positive integer
* Qutput: Base-two representation of the nunber

***/

#i ncl ude " St ack. h" /] our own -- <stack> for STL version
#i ncl ude <i ostreane
usi ng nanespace std;

int main()

unsi gned nunber, /'l the nunber to be converted
r emai nder ; /1 remai nder when nunber is divided by 2
St ack stackOf Remai nders; // stack of remainders
char response; /| user response
do
{

cout << "Enter positive integer to convert: ";
ci n >> nunber;

whi |l e (nunber != 0)

remai nder = nunber % 2;
st ackOf Rermai nder s. push(renai nder) ;
nunber /= 2;

}

cout << "Base-two representation: ";
whi |l e (!stackO Remai nders. enpty())

remai nder = stackO Rermai nders. top();
st ackOF Rermai nder s. pop() ;
cout << renai nder;

}

cout << endl;
cout << "\nhore (Y or N?";
cin >> response;

while (response == 'Y || response == 'y');

}

B. Building a St ack Class

Two steps:
1. Design the class; and
2. Implement the class.
1. Designing a St ack Class

Designing a class consists of identifying those operations that are needed to manipulate the
"real-world" object being modeled by the class. Time invested in this design phase will pay
off, because it results in awell-planned class that is easy to use.

Note: The operations are described independently of how the class will be implemented.
At this point, we have no idea what data members will be available, so the operations
must be described in some manner that does not depend on any particular
representation of the object.

The resulting specification then constitutes the "blueprint" for building the class.

From definition of stack as ADT, we must have (at |east) the following operations:

» Construction: Initializes an empty stack.)

* Empty operation: Examines a stack and return false or true depending on
whether the stack contains any values:

» Pushoperation: Modifies a stack by adding a value at the top of the stack:

* Top operation: Retrieves the value at the top of the stack:

» Pop operation: Modifies a stack by removing the value at the top of the stack:
To help with debugging, add early on:

* Output: Displays all the elements stored in the stack.

2. Implementing a St ack Class

Two steps.

1. Define data members.
2. Define the operations

a. Selecting Data Members.

A stack must store a collection of values, so we begin by considering what kind of storage

structure(s) to use.

Attempt #1.
Use an array with the top of the stack at position O.

e.g., Push 75, Push 89, Push 64, Pop

Push75 Push89 Push64 Pop
0 O__75 o 0 89 N, 0 64 0L_89
1 1 A5 SL -1 A s
2 2 2 S5+ >
3 3 3 3 3
4 4 4 4 4
Push %5 Push 8i) Pop
(11| 17 -—--._.______.__l“l tJF'--_,______*-_H” Sl _______,_-..-|ﬂ| 05
N Eaay S EnnliS Sosmdlis
[= 2| 13T 2|77 — 2|12
Gl 24 L 3] 6l |3 fm-—-ﬂlﬁ] 4
e e Cae e
S| 29 SI 51— 5| 23— 513
6l 7 ---__—-_'"""|ﬁ| zu-—f‘“"‘“ﬂm 51-'-"""""#|ﬁ1 29
] e) 2 e | s 712

+ features: This models the operation of the stack of plates.
— features: Not efficient to shift the array elements up and down in the array.

Attempt #2 — A Better Approach

Instead of modeling the stack of plates, model a stack of books.

Keep the bottom of stack at position 0 and maintain a"pointer" nyTop to the top of the

stack.

e.g., Push 75, Push 89, Push 64, Pop

i71

6]
mylop—ae [5]
[4]
13]
12]
i1
[0]

Push 75 Push 89 Push 64 Pop
4 4 4 4
3 3 3 3
2 2 nyTop®2[64 2 64
1 nyTop®1[89 1 89 |nyTop®1[89
nmyTop®0[_75 o_75 o__75 o__75
myTop =0 myTop=1 myTop =2 myTop =
Push 95 *ush &0 Pop
|71 |myTop—e-|7]| 80 |7]]_80
myTop—ee- 6] 95 61| 95 | myTop—-[6]| 05
|5l 77 =] | |5] 77
41121 [4]] 121 [4]]_121
13]_»d 13]_6d 3] _ed
[2]]__234 2] 234 [2][234
[1]]__51 [1]|__ 5l [1][__51
0] 29 0] 29 o] 29

Note: No moving of array elements.

So, we can begin the declaration of our class by selecting data members:

® Provide an array data member to hold the stack elements.

® Provide aconstant data member to refer to the capacity of the array.

® Provide an integer data member to indicate thetop of the stack.

Problems. We need an array declaration of the form
ArrayElementType nyArray[ARRAYCAPACITY] ;
— What type should be used?
Solution (for now): Usethe typedef mechanism:

typedef 1nt StackElement;
/1l put this before the class declaration

— What about the capacity?

const int STACK_CAPACITY = 128;
/1l put this before the class declaration

— Then declare the array as a data member in the private section:
StackElement myArray[STACK_ _CAPACITY];

Notes:

1. Thetypedef makes St ackEl enent asynonym for i nt. Putting it outside the
class makes it accessible throughout the class and in any file that #i ncl udes
St ack. h. If inthe future we want a stack of reals, or characters, or ..., weneed
only changethe t ypedef :

t ypedef doubl e St ackEl enent Type;
or

t ypedef char StackE enent Type;
or...

When the class library is recompiled, the type of the array's elements will be
doubl e or char or. ..

2. A more modern alternative that doesn't require using (and changing at ypedef isto
use the template mechanism to build a St ack class whose element typeis left
unspecified. The element type is then passed as a special kind of parameter at
compiletime. We'll describe this soon. Thisis the approach used in the Standard
Template Library (STL).

9
3. Putting thet ypedef and declaration of STACK CAPACI TY ahead of the class
declaration makes these declarations easy to find when they need changing.

4. 1If the type St ackEl enent or the constant STACK_CAPACI TY were defined as
public members inside the class declaration, they could be accessed outside the class
but would require qualification:

St ack: : STACK _CAPACI TY
St ack: : St ackEl enent

5. If we were to make the constant STACK CAPAC TY a class member we would
probably make it astatic data member:

static const int STACK CAPAC TY = 128;

This makes it a property of the class usable by all class objects, but they do not have
their own copies of STACK _CAPACI TY.

S0, we can begin writing St ack. h:
St ack. h

/* Stack.h provides a Stack cl ass.

* Basi c operations:

* Constructor: Constructs an enpty stack

* enpty: Checks if a stack is enpty

* push: Modi fies a stack by adding a value at the top

* t op: Accesses the top stack val ue; |eaves stack unchanged
* pop: Modi fies a stack by renoving the value at the top
* di splay: D splays all the stack el enents

* dass lnvariant:

* 1. The stack elenents (if any) are stored in positions

* 0, 1, . . ., nyTop of nyArray.

* 2. -1 <= nyTop < STACK_CAPACI TY

#i f ndef STACK
#def i ne STACK

const int STACK CAPACITY = 128;
t ypedef int StackEl enent;

cl ass Stack

{
[***** Function Menbers *****/
public:

[***** Data Menbers *****/

privat e:
St ackEl enent nyArray[STACK _CAPACI TY] ;
int nyTop;

}; /1 end of class declaration

#endi f

b. Function Members

® Constructor :
Simple enough to inline? Yes
cl ass Stack

publ i c:
[* --- Constructor ---

Precondi ti on:

A stack has been decl ar ed.
Post condi ti on:

The stack has been constructed as an
enpty stack.

Stack();

};/'/ 'en'd of class declaration

inline Stack::Stack() {myTop = -1;}

A declaration

Stack S

will construct S as follows:

S 0 1 2 3 4 127
nyArray[2] 2T 2] 2] ?] .. (7]
myTop [-1 |

® empty:

Receives. Stack containing it as a function member (implicitly)
Returns. Trueif stack is empty, false otherwise.
Member function? Yes

const function? (Shouldn't alter data members?) Yes
Simple enough toinline? Yes

cl ass Stack
publ i c:
/[* --- Is the Stack enpty? ---
* Receive: stack containing this function (inplicitly)

* Returns: true if the Stack containing this function is enpty
* and fal se ot herw se

~k*****************************~k*******************************/
bool enpty() const;
};// end of class declaration

I nline bool Stack::enpty() const
{ return (nyTop == -1); }

Test driver: Output
#i ncl ude <i ostreanr S enpty? true

usi ng nanespace std;
#i ncl ude "Stack. h"
i nt main()

Stack s;
cout << bool al pha << "s enpty? " << s.enpty() << endl;

}

® push:

Recelves. Stack containing it as a function member (implicitly)
Value to be added to stack

Return: Modified Stack (implicitly)

Member function? Yes

const function? No

Simple enough to inline? Probably not

cl ass St ack

public
/* --- Add a value to the stack ---

*

* Receive: The Stack containing this function (inplicitly)
* A value to be added to a Stack

* Pass back: The Stack (inplicitly), with value added at its
* top, provided there's space

* Qut put : "Stack full" nessage if no space for val ue

*

**/

voi d push(const StackEl enment & val ue);

}; /1 end of class declaration

Definition In St ack. cpp

voi d Stack::push(const StackEl enent & val ue)
if (nmyTop < STACK CAPACITY - 1) // Preserve stack invariant
{

++nmy Top;
nyArray[myTop] = val ue;

[l or sinply, nyArray[++nmyTop] = val ue;
el se

cerr << "*** GStack is full -- can't add new val ue ***\n"
<< "Must increase value of STACK CAPACITY in Stack.h\n";

Add at bottom of driver:

for (int i =1; i <= 128; i++) s.push(i);
cout << "Stack should now be full\n";
S. push(129);

Output

S enpty? true

St ack shoul d now be ful

*** Stack is full -- can't add new val ue ***

® Qutput:

So we can test our operations.

Receives. Stack containing it as a function member (implicitly)
Output: Contents of Stack, from the top down.

Member function? Yes

const function? (Shouldn't alter data members?) Yes

Simple enough to inline? No

Prototype:
/* --- Display values stored in the stack ---
*

* Receive: The Stack containing this function (inplicitly)
* The ostream out
* Qutput: The Stack's contents, fromtop down, to out

***/

voi d di spl ay(ostream & out) const;

Definition in Stack.cpp:
voi d Stack::display(ostream & out) const

for (int i =nyTop; i >=0; i--)
out << nyArray[i] << endl;
}
Modify driver:
/*
for (int i =1; i <= 128; i++) s.push(i);
cout << "Stack should now be full\n";
S. push(129);
*/
for (int 1 =1; 1 <= 4; i++) s.push(2*i);

cout << "Stack contents:\n";
s. di spl ay(cout);
cout << "s enpty? " << s.enpty() << endl;

Output
S enpty? true
Stack contents:

8
6
4
2
S

enpty? fal se

® top:
Member function? Yes
const function? Yes
Simple enough to inline? Probably not

Prototype:

/* --- Return value at top of the stack ---
*

* Receive: The Stack containing this function (inplicitly)
* Return: The value at the top of the Stack, if nonenpty
* Qutput: "Stack enpty" nessage if stack is enpty

**/
St ackEl enent top() const;

Definition (in St ack. cpp):

St ackEl enent St ack::top() const

i f (nyTop >= 0)

return (nyArray[nyTop]);
cerr << "*** GStack is enpty ***\n";

}

Add to driver at bottom:
cout << "Top value: " << s.top() << endl;

Output
ack contents:

St
8
6
4
2

s enpty? fal se
Top value: 8

® pop:
Member function? Yes
const function? No
Simple enough to inline? Probably not

Prototype:

/* --- Renove value at top of the stack ---

* Recei ve: The Stack containing this function (inplicitly)
* Pass back: The Stack containing this function (inplicitly)
* wthits top value (if any) renoved

* Qut put : "Stack-enpty” nmessage if stack is enpty.

**/
voi d pop();

Definition (in St ack. cpp):

voi d St ack: : pop()

i f (nyTop >= 0) /'l Preserve stack invariant
myTop- -;
el se
cerr << "*** Gtack is enpty -- can't renove a value ***\n";

}

Add to driver at bottom:
while (!s.enmpty())
{

cout << "Popping " << s.top() << endl;
s. pop() ;

cout << "s enpty? " << s.enpty() << endl;

Output
Stack contents:

NS~ O

s enpty? fal se
Top val ue: 8
Poppi ng 8
Poppi ng 6
Poppi ng 4
Poppi ng 2

S enpty? true

C. Two Applications of Stacks

Use of Stacks in Function Calls
Whenever afunction begins execution (i.e., is activated), an activation record (or stack
frame) is created to store the current environment for that function. Its contents include:

parameters

caller's state information (saved)
(e.q., contents of registers, return address)

local variables

temporary storage

What kind of data structure should be used to store these when a function calls
other functions and interrupts its own execution so that they can be recovered and
the system reset when the function resumes execution?

Clearly need LIFO behavior. (Obviously necessary for recursive functions.)
So use astack. Sinceit is manipulated at run-time, it is called the run-time stack.

What happens when a function is called:

(1) Push acopy of its activation record onto the run-time stack
(2) Copy its arguments into the parameter spaces
(3) Transfer control to the address of the function's body

So the top activation record in the run-time stack is always that of the function
currently executing.

What happens when a function terminates?

(1) Pop activation record of terminated function from the run-time stack
(2) Use new top activiation record to restore the environment of the interrupted
function and resume execution of it.

Examples
i nt ﬁain()
£2(...);
f3(...);
}
void f1(...) {.)
void f2(...) {... f1(...); ...}
void f3(...) {... f2(...); ...}

int factorial (int n)
{ if (n < 2)
return 1;
el se
return n * factorial (n-1);

}

What happens to the run-time stack when the
following statement executes?

int answer = factorial (4);

This pushing and popping of the run-time stack is the real overhead associated with
function calls that inline functions avoid by replacing the function call with the body of the
function.

Application to Reverse Polish Notation

1. What is RPN?
A notation for arithmetic expressions in which operators are written after the operands.
Expressions can be written without using parentheses.

Developed by Polish logician, Jan Lukasiewics, in 1950's

Infix notation: operators written between the operands

Postfix " (RPN): operators written after the operands

Prefix " operators written before the operands

Examples

INFIX RPN (POSTFIX) PREFIX

A+ B AB + + AB
A* B+ C AB* C+ +* ABC
A* (B+ O ABC+ * *A+ BC
A-(B-(C-D)| ABCD- - - -A-B-CD
A-B-C-D AB- C- D- ---ABCD

2. Evaluating RPN Expressions

a. "By hand": Underlining technique:

Scan the expression from left to right to find an operator. Locate ("underline") the last
two preceding operands and combine them using this operator. Repeat this until the end
of the expression is reached.

Example: 234+56- - *
® 234+56--*® 2756--*
® 2756--* ® 27-1-*

® 27-1-*® 28* ® 28* ®
b. Algorithm — using a stack of operands

ALGORITHM TO EVALUATE RPN EXPRESSIONS

Recelve: An RPN expression.

Return: A stack whose top element is the value of the RPN expression
(unless an error occurred).

Note: Usesa stack to store operands.

1. Initialize an empty stack.
2. Repeat the following until the end of the expression is encountered:

a. Get the next token (constant, variable, arithmetic operator) in the RPN
expression.

b. If the token is an operand, push it onto the stack. If it is an operator, then do
the following:

(i) Pop the top two values from the stack. (If the stack does not contain two
items, an error due to amalformed RPN expression has occurred, and
evaluation is terminated.)

(i) Apply the operator to these two values.
(ii1) Push the resulting value back onto the stack.

3. When the end of the expression is encountered, its value is on top of the stack (and,
in fact, must be the only value in the stack).

Example: Seep. 172.

Lymexcny

dd ' 54—

.

.

954-

St

tend of snns) .

St

[ep—

To generate code, change (ii) and (iii) to:

(ii") Generate code:

L RE s

Pazsl 2 cootheshuck

Pazld cootheshuck

Popdausd 2 from thestack, ma Hiphr,
aid prsh the ezl backono e sk

Pzl 2 cnotheshack

Pzl S cnotheshuck

PopSad 2 from the sk, wld | ud
prsh the rasn b ok oo e stk

Pop 14 wad 13 Fomthe sck, sibimat,
and prsh the ezl ok onio e stk

e oferpessica i onop ofthe stk

LQAD oper andiy

op operandy
STORE TEMP#

(iii') Push TEMP# onto stack.

Example: Generatecodefor AB+CD +*

c. Unary minus causes problems — use different symbol

Example: 5 3 - - ® 53-- ® 5-3- ®
53 - - ® 53-- ® 2-® =2
We'll use adifferent symbol: 5 3 ~ - 53- ~

3. Converting from Infix to RPN

a. "By hand": Represent infix expression as an expression tree:

A* B+ C A* (B + QO

A /®\@

A/GKB C A / \

B C

((A+B) * O [/ (D- FE

0

®/
}Q/\CDE
\
A B

Traverse the tree in Left-Right-Parent order to get RPN
Traverse tree in Parent-Left-Right order to get Prefix
Traverse tree in Left-Parent-Right order to get Infix [must insert ()'s]

8

b. By hand: "Fully parenthesize-move-erase" method:

1. Fully parenthesize the expression.
2. Replace each right parenthesis by the corresponding operator.
3. Erase dll left parentheses.

Examples: L
[v[¥

A*B+C ® ((A* B + 0O

® ((AB*C+ ® AB* C+

A*(B+0O ® (A* (B+Q)

® (A(BC+*® ABCH+*

((A+B *Q / (D- B ® (((Alj’l*_cgl| (D-I_EY*

® ((AB+C* (DE - /
® AB+C*DE- |/

c. Algorithm — using a stack of operators
ALGORITHM TO CONVERT AN INFIX EXPRESSION TO RPN

Accepts: Aninfix expression.
Output: The RPN expression.
Note: Uses a stack to store operators.

1. Initialize an empty stack of operators.
2. While no error has occurred and the end of the infix expression has not been reached:

a. Get the next input Token (constant, variable, arithmetic operator, |eft
parenthesis, right parenthesis) in the infix expression.

b. If Token is
(i) aleft parenthesis. Push it onto the stack.

(i) aright parenthesis. Pop and display stack elements until aleft parenthesisis
encountered, but do not display it. (Itisan error if the
stack becomes empty with no left parenthesis found.)

(iii) an operator: If the stack is empty or Token has a higher priority
than the top stack element, push Token onto the stack.

Otherwise, pop and display the top stack element; then
repeat the comparison of Token with the new
top stack item.

Note: A left parenthesisin the stack is assumed to have
alower priority than that of operators.

(iv) an operand: Display it.

3. When the end of the infix expression is reached, pop and display stack items until the
stack is empty.

Lymresgnx

| l:-:m:rrr:l

-{2+413)

-
L2
+
w

—

R
+
o

I

+1

L]
L= p— e

{ pa— o

L e

tempte)

o — o

&

| sp———] | ===

he— x

fegd oF Frns

[——

ERERERE

A

S0 ety

DizphrT

Dirphy

Popuddispho

itack -

fwck |

Dirphwa

Disphurd

Popaund dizphae

Popd

Popand d sphar

