I11. Classes (Chap. 3)

Aswe have seen, C++ data types can be classified as:

* Fundamental (or ssimple or scalar):
A data object of one of these typesis asingle object.
I nt, doubl e, char, bool , conpl ex, and the related types (unsi gned,
short, etc.)
enumerations
e Structured:
These store collections of data.
arrays, structs, unions, classes, valarrays, bitsets, and the containers and
adaptersin STL

We have studied all of the fundamental types (except conpl ex) and the data structures C++
gets from C — arrays, structs, and unions. We will now look at classes in detail; pointers
(and linked structures that use pointers) and vectors, stacks, queues, and lists from STL will
be considered soon.

A. Structs vs. Classes
Similarities between structs and classes

1. Both can be used to model objects with different attributes (characteristics) represented
asdata members (aso caled fields or instance variables). They can thus be used to
process non-homogeneous data sets.

2. They have essentially the same syntax.

Differences between structs and classes

1. C does not provide classes, C++ provides both structs and classes.

2. Members of a struct by default are public (can be accessed outside the struct by using
the dot operator).

In C++ they can be explicitly declared to be private (cannot be accessed outside the
struct).

Members of aclass by default are private unless explicitly declared to be public.

Thus, choosing which to use is not based on their capabilites. It iscommon practice to
use classes to prevent users of a new data type from (directly) accessing the data
members. (We can also enforce this with structs, but thisis not their default nature.)

Differences between "traditiona" (C) structs and OOP (C++) structs and classes

C++'s structs and classes are extensions of C's structs. They can be used to model objects
that have:

« Attributes (characteristics) represented as data members
and
» Operations (behaviors) represented as function members (also called methods).

Terminology:
It iscommon to call the two parts of aclass data members and member functions .
("Datamembers"' and "function members" isreally more correct.) We will use the
terms interchangeably.

Thisis an important difference because it leads to a whole new style of programming —
object-oriented rather than procedural. Objects can now be self-contained, carrying
their own operations around with them — commonly called the | can do it myself
principle — instead of having to be shipped off to some external function that operates on
them and sends them back.

1. Declaring a Class

a. Usual Form:

cl ass ClassName

publi c:
Decl arati ons of public nmenmbers
private:
Decl arati ons of private nmenmbers
b
Notes:

1. The datamembers are normally placed in the private section of a class; the function
members in the public section.

2. Some programmers prefer to put the private section first because thisis the default
accessfor classesso thepri vat e: specifier could be omitted. However, we will
put the public interface part of the classfirst and the hidden private details |ast.

3. Although not commonly done, a class may have severa private and public sections;
the keywords pri vat e: and publ i c: mark the beginning of each.

b. Access
(i) A particular instance of aclassis called an object :
ClassName object name;

(i1) Private members can be accessed only within the class (except by friend
functions described later).

(ii1) Public members can be accessed within or outside the class.

To access them outside the class, one must use the dot operator:

object _name. public_member_name

c. Where are class declarations placed?

Usually in a header file whose nameis ClassName. h. Thelibrary isthen called a
class library.

2. Example: Declaring aclassTi ne — Version 1

R 1 =T B R T T
This header file defines the data type Tinme for processing tine.
Basi c operations are:

Set : To set the tine
D splay: To display the tinme

#i ncl ude <i ostrean»
usi ng nanmespace std;

class Tine

/****.**** '\/Enber functlons ********/
publi c:

/* Set sets the data nmenbers of a Tine object to specified val ues.
*
* Receive: hours, the nunber of hours in standard tine
* m nutes, the nunber of mnutes in standard tinme
* AVPM (A if AM 'P if PM
* Return: The Tine object containing this function with its
* nyHours, nyM nutes, and nyAMor PM nenbers set to hours,
* m nutes, and am pm respectively, and nyMITine to
* the equivalent mlitary tine
*

***/

voi d Set(unsigned hours, unsigned m nutes, char am pm;

/* Display displays tinme in standard and mlitary format using
out put stream out.

*

*

* Recei ve: ostr eam out

* Qutput: The tinme represented by the Tine object containing
* this function

* Passes back: The ostreamout with tine inserted into it
**/

voi d Di splay(ostream & out) const;

/********** m-ta 'ven-bers **********/

private:
unsi gned nyHours,
nyM nut es;
char nyAMor PM [l "A or 'P
unsi gned nyM I Ti ne; [l mlitary tinme equival ent

}; I/ end of class declaration

Notes.
1. The "ny" in names of data membersis simply to remind us of the "l-can-do-it-myself"
nature of a class object.

2. The const at theend of D spl ay() 's prototype makes it aconst function, which
means that it cannot modify any of the data members. It is good practice to protect the
data members in this way from accidental modification.

3. Why not make all members public?
So they can't be accessed outside the class.

Why? Otherwise programmers may use them in programs, other classes, libraries, . . .
However, the data members often are changed to improve storage, simplify algorithms
for operations, etc., and all programs, classes, . . . that access them directly must then be
modified.

Results:
* Increased upgrade time.
* Increased programmer cost
» Decreased programmer productivity
* Reduced profits due to

— Software late getting on the market — lose out to comptetitors
— Loss of customer confidence in software reliability

Therefore:
P Always define data members of a class as private.

K eeping the data members "hidden" forces programs to interact with an object through
its member functions, which thus provide the interface between programs and the class.
If this does not change, then programs that use an object will not require change.

3. Implementation of a Class

Usually, only the prototypes of the member functions are placed inside the class
declaration to avoid cluttering up the intterface — definitions are outside.

However, when a declaration of some public item such as atype, constant, or functionis
inside a class declaration — another name for "function prototype" is "function
declaration" — and is then referenced or defined outside the class declaration, the
compiler must be informed where the declaration/prototype is.

Thisis accomplished using the scope operator : : which hasthe form

ClassName: : 1temName

Thisisreferred to asthe qualified or full name of 1temName.

Example:
cl ass Sonet hi ng

publi c:
static const int CAPACTY = 100;
t ypedef doubl e ArrayType[CAPAC TY];

void Print(ArrayType a, int itsSize);

Sonet hi ng: : ArrayType x = {0};
for (int i =0; I < Something:: CAPAC TY; i ++)

voi d Sonet hing::Print(Sonething::ArrayType a, int itsSize)
{. . .1

Traditionally, definitions of member functions have been put in an implementation file
ClassName. cpp corresponding to the class header file. Thisis done to enforce data
abstraction — separating the interface of the ADT from its implementation details.
(Unfortunately, the class data members, which store data and are therefore part of the
implementation, must beinthe. hfile.)

With the increasing use of templates, however, this practice is becoming less common
because current compiler technology doesn't permit this split for templates — everything
has to be in the same file. Thus the reason for dropping the". h" from standard class
libraries. They'rereally class-template libraries, and there are therefore no
corresponding ". cpp" files.

4. Example: Definitions of Member Functions for class Ti ne — Version 1

[** Time.cpp -- inplenents the Tine nenber functions **/

#i ncl ude "Tinme. h"

[*** Wility Functions -- Prototypes ***/

int ToMlitary(unsigned hours, unsigned m nutes, char am pn);
[]----- Function to inplenent the Set operation -----

void Ti me: : Set (unsi gned hours, unsigned m nutes, char ampm

/'l Check class invariant

if (hours >= 1 && hours <= 12 &&
mnutes >= 0 && mnutes <= 59 &&
(ampm="A || ampm=="F"))

nyHours = hours;
nyM nutes = m nut es;
nmyAMor PM = am pm
nyMITime = ToM litary(hours, m nutes, ampn);
}
el se
cerr << "*** Can't set tinme with these values ***\n";
/1l Cbject's data nenbers remai n unchanged

[]----- Function to inplenent the D splay operation -----
void Time::Di splay(ostream & out) const
{
out << nyHours << ':'
<< (nyMnutes < 10 ? "0" : "") << nyM nutes
<<' ' << nmyAMrPM<< " M ("

< nmyMITime << " mil. time)";

[*** Wility Functions -- Definitions ***/
/[* ToMIlitary converts standard tinme to mlitary tinme.
*

* Receive: hours, mnutes, ampm
* Return: The mlitary tine equival ent

**/

int ToMIlitary (unsigned hours, unsigned mnutes, char am pm

if (hours == 12)
hours = O;

} return hours * 100 + minutes + (ampm=="P ? 1200 : 0);
5. Testing the class
/] Test driver
#i ncl ude "Tine. h"
#i ncl ude <i ostreane
usi ng nanmespace std;
int main()
Ti me neal Ti ne;
nmeal Ti me. Set (5, 30, 'P);
cout << "We'Il be eating at ";
meal Ti me. D spl ay(cout) ;

cout << endl;

}
Execution
VW'l|l be eating at 5:30 P.M (1730 m . tinme)

P Again, note the difference from the procedural approach. Rather than package up the

object and send it off to some function for processing, we send a message to the
object to operate on itself. To set my digital watch to 5:30 P.M., | don't wrap it
up and mail it off to Casio and have them do it; rather, | push abutton! To display
the time, | don't wrap up my watch and mail if off to Casio and have them tell me
what timeitis. Ridiculous! | haveit display the timeto me itself, perhaps pushing a
button to turn on the backlight so | can seeiit.

6. Some Notes

a. Member functions: "Inside" an object so don't pass object to them as a parameter.
Another way to view this:

They receive the class object to be operated on implicitly,
rather than explicitly via a parameter.

Non-member functions: "Outside" an object, so to operate on an object,
they must receive it via a parameter.

b. Public items like types and constants declared inside a class declaration must be
qualified with the class name when used outside the class:

ClassName: : ItemName

Constants are usually specified to be static so thisis aglobal class property that can be
accessed by all objects of that class type rather than having each such object carry
around it's own copy of that constant.

c. Nontrivial member function:
Usually: Prototypewithin the class
Define outside the class, must qualify its name:

ClassName: : FunctionName(. . .)

d. Simple member function:

Usually: Specify that it beani nl i ne function, which suggests to the compiler that it
replace a function call with the actual code of the function with parameters replaced by
arguments, thus avoiding the usual overhead of afunction call. Thiscan be donein
two ways.

1. Prototype the function inside the class declaration as usual, but define it as inline
below the class declaration in the header file, qualifying its name as
usual:

In ClassName. h
cl ass ClassName

/'l Public section -- function nmenbers
Reijpé SimpleFun(param_list);
/Il Private section -- data nenbers
i Co
i nli ne RetType ClassName: : SimpleFun(param_list)

/1 function body

9]

2. Simply define the function inside the class declaration. Inthiscase, it need not
be prototyped, its name need not be qualified, and the compiler will treat it asan inline
function:

In ClassName. h
cl ass ClassName

// Public section -- function nenbers
Ret'Tybe' SimpleFun(param_list)

/1 function body
}

/] Private éebtion -- data nmenbers

b

But use this method only for simple functions to avoid interface clutter.

e. In Set () , we tested whether the arguments are valid:

i f (hours >= 1 && hours <= 12 &&
mnutes >= 0 & & mnutes <= 59 &&

(ampm="A || ampm=="FP))
nyHours = hours;
nyM nutes = m nut es;
{
el se .

Thisisto ensure that the following class invariant is true:

1 £ nmyHours £12 && 0 £ nyM nutes £59 &&
my AMor PM== 'A' or 'P' && 0 £ nyM | Ti me £ 2359

This class invariant is intended to guarantee that the data members always contain valid
values so that other function members can be sure of this Thus, whenever an operation
modifies any of the data members, we should always check that the class invariant still
holds.

An alternative way to test thisisto usetheassert () mechanism (from
<cassert >)— at least during debugging — which:

» Accepts aboolean condition;
« |f that condition is true, execution continues as usual.

* |f the condition is false, execution halts and an error message is displayed.

[10]

#i ncl ude <cassert>
usi ng namespace std;
[]----- Function to inplenment the Set operation -----
void Tinme:: Set(unsigned hours, unsigned m nutes, char am pm

assert(hours >= 1 && hours <= 12 && m nutes <= 59 &&

(am pm=="A" || am_pm == "P"));
nyHours = hours;
nyM nutes = m nut es;

}

Testing:
If we changedriver.cpp as. meal Ti me. Set (13, 30, 'P);
execution terminates with the following message:

Tine.cpp :11: failed assertion hours >= 1 & hours <= 12 &&
mnutes <= 59 && (ampm=="A || ampm=="P)'
IOT trap

A third alternative isto throw an exception that the calling function can catch and take
appropriate action:
[]----- Function to inplenent the Set operation -----
voi d Time:: Set (unsigned hours, unsigned m nutes, char ampm
I/ Check class invariant

if (hours >= 1 && hours <= 12 &&
mnutes >= 0 & mnutes <= 59 &&

(ampm="A ||ampm=="F))
el se
char error[] = "*** ||llegal initializer values ***\n";
throw error;
}
}
To catch this exception, a calling function might contain
try

meal Ti me. Set (13, 30, 'P');
cout << "This is a valid tinme\n";

%atch (char badTinme[])

{
cout << "ERROR " << badTi ne << endl
exit(-1);

cout << "Proceeding. . .\n";

When executed, the output produced will be
ERROR *** ||legal initializer values ***

7. Class Constructors

a. Recall that constructing an object consists of
(1) allocating memory for the object, and
(2) initializing the object.
In our example, after the declaration

Ti me neal Ti ne;
memory has been allocated for neal Ti ne, but it's data members are not initialized (and

are likely to contain "garbage" values). It would be better if:

« the programmer could specify initial values for neal Ti ne
« default values were used if no initial values are specified.

b. This can be accomplished using constructor functions.

Properties:
(1) Their primary role (for now) isto initialize the data members of an object

with values (either default values or values provided as arguments).

(2) Their names are always the same as the class name.

(3) They are always function members and are (almost always) prototyped in the
public section.

(4) They do not return avalue; they have no return type (not even voi d).
For this reason, documentation that describes their behavior commonly specifies:

1. What valuesthey receive (if any) via parameters:
2. Preconditions: Conditions that must be true before the function is called.

and
3. Postconditions, Conditions that must be true when the function

terminates.
(5) Often they are quite simple and can be inlined in either of the two ways

described earlier.
(6) Constructors get called whenever an object is declared.

(7) If no constructor isgiven in the class, the compiler supplies a default
constructor which allocates memory and initializes it with some default

(possibly garbage) value.

A default constructor is one that is used when the declaration of an

object contains no initial values:
ClassName object name;

(8) If we supply a constructor for aclass, then we must also provide a
default constructor.

c. Example: Constructorsfor Ti ne class

InTi me. h
class Tine

/******** '\/Enber functions ********/
public:

[***** (O ass constructors *****/

/* --- Construct a class object (default).

* Precondition: A Tinme object has been decl ared.

* Postcondition: The Tinme object is initialized to 12:00 A M;

* that is, the nyHours, nyM nutes, and nyAMor PM

* menbers are initialized to 12, 0, 'A, respectively,
* and nyMITinme to O.

*

***/

Time();

* --- Construct a class object (explicit val ues).

* Precondition: A Tinme object has been decl ared.

* Recei ve: Initial values initHours, initMnutes, and

* I ni t AMPM

* Postcondition: The nyHours, nyM nutes, and nyANMor PM nenbers

* of theTinme object are initialized to initHours,
* initMnutes, and initAVWM, respectively, and
* nyMITime to the corresponding mlitary tine.

*

***/

Ti me(unsi gned initHours, unsigned initM nutes, char initAMPM;

/1 other menber function pr ot ot ypes

/********** I:h.ta IVEnberS **********/
private:

}; /1 end of class declaration

inline Time::Time()
{
myHours = 12;
nyM nutes = 0
my AMor PM = " A" ;
myM | Ti me 0

class Tinme

/******** Functlon I\/Ermers ********/
publ i c:

[***** (] ass constructors ****x*/

[* --- Construct a class object (default).

[* --- Construct a class object (explicit val ues).

/1 other menmber function prototypes

/********** Data 'ven«bers **********/
private:

}; I/ end of class declaration

Addto Ti me. cpp

#i ncl ude <cassert>

usi ng nanespace std;

[]----- Function to inplenent the explicit-value constructor -----

Time:: Ti me(unsigned initHours, unsigned initMnutes, char initAWM
I/ Check class invariant

assert(initHours >= 1 & initHours <= 12 &&
inftMnutes >= 0 & initMnutes <= 59 &&

(inftAVPM=="A" || initAWPM == "P"));
myHours = initHours;
myM nutes = initM nutes;
my AMor PM = i ni t AMPM
myM I Time = ToM litary(initHours, initM nutes, initAMPM;

Testing# 1

Ti me meal Ti ne,
bedTi me(11, 30, ' P');

Creates and initializes 2 Time objects:

Default Constructor Explicit-Value Constructor
nmeal Ti me bedTi me
myHour s nyHours [_IT]
nyMnutes [0] nyM nutes [30_]
my AMor PM nyAMorPM [P]
nyMITire [0] nyM | Ti me [2330 |
Member functions Member functions
nmeal Ti me. D spl ay(cout); Execution:
cout << endl; NN
: ot . 12:00 A M (0 nil. tine)
Doy T o aplay(eout)i 19030 PM (2330 mil. time)
Testing # 2 Execution:
. . Ti me. cpp: 12: failed assertion
Time meal Ti ne, Do “initHours >= 1 & initHours <= 12 &&
bedTi me(13,0," P); initMnutes <= 59 &&
(inftAMVPM == "A" || initAMPM == 'P')"
IOT trap

Note: We could combine both constructors into a single constructor function by
using default arguments:

Replace constructorsin Ti ne. h with:

/* --- Construct a class object.
Precondition: A Tine object has been decl ared.
Recei ve: Initial values initHours, initMnutes, and

init AVPM (defaults 12, 0, "A')

Post condi tion: The nyHours, nyM nutes, and nyAMor PM nenbers of
the Tine object are initialized to initHours,
initMnutes, and initAVPM, respectively.

Time(unsi gned initHours = 12, unsigned initM nutes = 0,
char initAVMPM = " A");

Testing:

Ti re neal Ti ne,
t1(5),

t2(5, 30),

t3(5, 30,

Creates 4 Time objects:

meal Ti ne

tl

P

t2

t3

nyHour s [I2]
myM nutes[0|
my ANbr PM
myM | Ti e[0]

nyHour s
myM nutes[0 |
my ANbr PM
nyM | Ti ne[500 |

nmyHour s
myM nutes[__30]
ny AMor PM
nyM | Ti me[530 |

nmyHour s
nmyM nut es[_30]
nyAMOrPM [P]
nyM | Ti ne[1730

Member functions

Member functions

Member functions

Member functions

meal Ti me. D spl ay(cout) ;
cout << endl;

t1l. D splay(cout);
t2. D splay(cout);
t 3. D spl ay(cout);

cout << endl;
cout << endl;
cout << endl;

12:00 AM (0 ml. tine)
5:00 AM (500 ml. tine)
5:30 AM (530 ml. tine)
5:30 P.M (1730 nil. tinme)

Question: What happens with the declaration

Time t(5, '"P);

Will it create Ti ne object t with values 5, O,

1 Pl

No — compilation error.

in its data members?

All parameters with default arguments must appear after all parameters

without default arguments.

9. Copy Operations

Two default copy operations are provided:

1. Copy in initialization

2. Copy inassignment

Each makes a (byte-by-byte) copy of the data members of the object.

Examples:
Time t = bedTi me;
Time t(bedTi ne);
Both:

1. Allocate memory for t
2. Copy data members of bedTi ne into them so t isacopy of bedTi ne :

t bedTi ne
myHour s nmyHour s
myM nut es_30] myM nut es_30]
myAVor PM [P]| € |nyAvor M [P
nyM | Ti me[2330] nyM | Ti me[2330]
Timet = Time(11, 30, 'P');

also does: Right side calls the explicit-value constructor to construct a (temporary) Ti ne
object and then copiesitintot.

Note: These are not assignments; adefault copy constructor iscalled.

There is adefault copy operation for assignment.

Example:
t = neal Ti ne;

copies the members of neal Ti me into t, replacing any previous values:

t meal Ti me
myHours [12 1 nyHours [12 1]
nyMnutes[0] < nyM nutes[_0__]
yAMorPM [A myAbr PM A]
nyMITime[o | nyMITine[g]

9. Access (Extractor) Functions

Data members are private; they cannot be accessed outside the class. It is often necessary,
however, to make the values stored in some or all of these members accessible. For this,
access (or extractor) member functions can be provided.

Example:
Problem: To add extractorsto class Ti ne.
(We will do thisonly for the myHour s member; the others are essentially the same.)

Specification:
Receives: A Ti ne object
Returns: The value stored in the nyHour s member of that object

As usual, the specification tells us how to prototype the function:

* |f wedeclare it as amember function, then it will be "inside" the Ti ne object and
so no parameters (Ti me or otherwise) will be needed.
* The function returns nyHour s, which is an integer.

In addition, because this function simply retrieves the value stored in a data member, it is
simple enough to inline.

Also because it does not modify any data members it should be prototyped (and defined) as
aconst function.

Addto Tinme. h

class Tine

/********** Mta '\/Bnbers **********/

/******** '\/bnber functlons ********/
public:
[***** Data Retrievers ****x/
/* Hour Accessor
* Receive: The Tinme object containing this function (inplicitly)

* Return: The value stored in the nyHours nenber of the Tine
* object containing this function

***/

unsi gned Hour () const;

/1 and simlar functions for nyMnutes, nyAMorPM and nyMITine retrieva

/**:k"k"k****"k Mta '\/Bnbers **********/
privat e:

}; /1 end of class declaration
[]----- Definition of Hour()

i nline unsigned Tine::Hour() const;
{ return myHours; }

Testing:
Ti ne neal Ti ne; || Execution:
S [l
cout << "Hour: " << neal Tine.Hour() << endl; || Hour: 12
S I

9. Output and Input — Overloading Operators — Friend Functions

Add output operation to aclass early so that it can be used for debugging.

It is convenient to overload oper at or << for a Ti e object so we can write

cout << "W'l| be eating at " << neal Tine << endl;
instead of
cout << "W&'I| be eating at " ;

nmeal Ti ne. D spl ay(cout);
cout << endl :

a. Overloading operators:

— In C++, operator D can be implemented with the functionoper at or D()

— If amember function of aclass C, and a is of type C, the compiler treatsa D b as
a. operat or D(b)

— If not amember function of aclass C the compiler treatsa D b as

operatorD(a, b)

b. Overloading Output Operator <<

Canoper at or <<() be amember function? No, because the compiler will treat
cout <<t

as
cout . operator<<(t)
which would mean that oper at or <<() would have to be a member of class ost r eant

Putting the prototype
ostream & operator<<(ostream & out, const Tinme & t);
inside the class declaration causes a compiler error like:

"Time::operator <<(ostream & const Tine &' nust take
exactly one argunent

because making oper at or <<() a member function of Ti me meansthat it already has
the Ti me object containing it as an (implicit) parameter, so it can't have two more.

Option 1: Put its prototype in the header file Ti ne. h but outside the class declaration.

and it'sdefinition in Ti me. cpp

Actually,
because it is so simple, weinline it by putting it's definition in Ti nme. h:
class Tine
public: /1 docunentation omtted to save space here
Time();

Ti me(unsi gned initHours, unsigned initMnutes, char initAWM;
int Hour() const{ return nyHour; }

int Mnute() const{ return nyMnute; }

char AMPM) const{ return nyAMorPM }

int MITime() const{ return nyMITine; }

void D splay(ostream & out);

private:
unsi gned nyHours,
nyM nut es;
char nyAMor PM [l "A or 'P
unsi gned nyM | Ti ne; /[l mlitary tinme equival ent
}; // end of class declaration
[* --- operator<< displays tine in standard and mlitary fornmat

usi ng ostream out.

Recei ves: An ostreamout and a Tine object t

Qut put : The tinme represented by the Tinme object t
Passes back: The ostreamout wth t inserted into it.
Return val ue: out

I nline ostream & operator<<(ostream & out, const Tinme & t)

}

t.Display(out);
return out;

Why 1st parameter a reference parameter?
The ostream gets modified so must be passed back.

Why 2nd parameter a const reference parameter?
To avoid the overhead of having to copy a class object.

Why return areference to out ?
So we can chain output operators. For example:

Output
cout << tl1 << endl << t2 << endl; 5:00 AM (500 ml.
5:30 AM (530 ml

33

Because <<isleft-associative, thisis evaluated as
operator<<(cout, tl) << endl << t2 << endl;
So first function must return cout so expression becomes

cout << endl << t2 << endl;
which is evaluated as
operator<<(cout, endl) << t2 << endl;

Option 2: Replace D spl ay() with oper at or << :

Replace the prototype of Di spl ay() InTi ne. h
class Tine

{
publ i c:

[****%%][O Functions ****x*/

[* --- operator<< displays tine in standard and mlitary fornmat
usi ng ostream out.
Recei ves: An ostream out and a Tinme object t
Qut put : The tine represented by t

Passes back: The ostreamout with representation of t
inserted into it.
Return val ue: out

friend ostream & operator<<(ostream & out, const Time & t);

h

And replace the definition of Di spl ay() InTi ne. cpp

[]----- Function to inplenent ostream output -----

ostream & operator<<(ostream & out, const Tine &t)

{

out << t.nyHours << ':
<< (t.nmyMnutes < 10 ? "0" : "") << t.nyMnutes
<<' ' < t.nyAMorPM << ". M !
< t.nyMITime << " ml. time)";

return out;

A function that aclass names asafriend isa: non-member function to which the

class has granted permission to access members in its private sections.

Note: Becauseafriend function is not a function member:
e |t'sdefinitionisnot qualified using the class name and the scope operator (: :).
* |t receives the time object on which it operates as a parameter
» |t usesthe dot operator to access the data members.

b. Input

To add an input operator to our Ti ne class, we proceed in much the same way as for
output. We could either:

1. Add amember function ReadTi ne() that reads values and stores them in the data
members of aTi me object; then call it from non-member function oper at or >>()

2. Declare oper at or >>() to beafriend function so that it can access the data
members of a Ti me object and store input values in them.

10. Adding Relational Operators:

We will describe how to add only one of the relational operators — less than — the others
are similar.

Specification:
Receives. Two Ti ne objects
Returns. Trueif thefirst Ti me object isless than the second; false otherwise.

Question: Should it be a member function?

From an internal perspective: | compare myself with another Ti me object and
determineif | am less than that other object

From an external perspective: Two Ti ne objects are compared to determine if the
first isless than the second.

Answer: Either will work, but in keeping with the OOP "I-can-do-it-myself" principle
of making objects self-contained, we usually opt for using member functions
whenever possible.

In this case, we might better rephrase our specification as:
Recelves. A Ti ne object (and the current object implicitly)

Returns: Trueif | (the Ti me object containing this function) am less than the
Ti me object received; false otherwise.

Addto Ti ne. h:
class Tine
publi c: /'l menber functions

J****x* Rel ati onal operators *****/
[* --- operator< determnes if one Tinme is |less than another Tine

Receive: A Tinme t (and the current object inplicitly)
Ret ur n: True if time represented by current object is < t.

bool operator<(const Time & t);

}; /1 end of class declaration
I nl i ne bool Tine::operator<(const Tine & t)

{ return nyMITime < t.nyMITinme; }

For the external perspective:
class Tine
public: /'l menber functions

| ***** Rel ati onal operators ***x**/
[* --- operator< determnes if one Tinme is |less than another Tine

Receive: Two Tines tl1 and t2
Ret ur n: True if tine tl is less than tine t2/

friend bool Time::operator<(const Time & tl1l, const Tinme & t2);

}; /1l end of class declaration
I nl i ne bool operator<(const Tine &t1l, const Tine & t2)

{ return t1lL.nyMITime < t2.nyMITine; }

12. Adding Increment/Decrement Operators:

Specification:
Recelves: A Ti ne object (perhaps implicitly)
Returns. The Ti me object with minutes incremented by 1 minute.

Question: Should it be a member function? Yes

Addto Ti ne. h:
[***** | ncrement operator *****/
[* --- Advance() increnents a Tinme by 1 mnute.

Recei ve: Current time object (inplicitly)
Pass back: The Tine object with its mnutes increnented by 1.

voi d Advance();

Addto Ti ne. cpp:

[]----- Function to inplenment Advance() -----
voi d Ti ne: : Advance()

{

nyM nut es++;
nyHours += nyM nutes / 60;
nyM nutes % 60,;
I f (nyMI|Tinme == 1159)
nyAMor PM = ' P
else if (nyMITine == 2359)
nyAMor PM = ' A’
/'l el se no change
nyMITime = ToMIlitary(nyHours, nyM nutes, nyAMorPM ;

We could overload oper at or ++() but how do we distinguish between
prefix ++ and postfix ++7?
Solution: In C++,
oper at or ++() with no parametersis prefix
oper at or ++(i nt) with oneint parameter is postfix
[Thei nt parameter is not used in the definition.]

13. Problem of Redundant Declarations

A classlike Ti me might be used in a program, libraries, other class libraries, and so it
could easily happen that it getsincluded several timesin the same file —

e.g.,

Program needs Ti e class, so it #i ncl udes" Ti ne. h"

Program also needs library Li b, so it #i ncl udes"Li b. h" ... butLib.h
also #i ncl udes" Ti ne. h"

This would cause "redeclaration” errors during compiling.

How do we prevent the declarationsin Ti ne. h from being included more than oncein a
file?

Useconditional compilation

Wrap the declarations in Ti ne. h inside preprocessor directives like the following:

[The preprocessor scans through a file removing comments, #i ncl uding files, and
processing other directives (which begin with #) before the file is passed to the compiler.]

#i f ndef TIME - %% % Usually the name of the class in all caps
#define TIME

#endif

Thefirst directive tests to see whether the identifier TI ME has been defined.

If it has not:
Processing proceeds to the second directive, which defines TI ME (to be 1),
and then continues on through what follows and on to the #endi f and beyond.

If it has been defined:
The preprocessor removes all code that follows until a#el i f, #el se, of #endi f
directive is encountered.

Thus, the first time the preprocessor encounters a class declaration like Ti nre, it defines the
name T1 ME. If it encounters the class declaration again, since Tl IVE has been defined, all
code between #i f ndef TI MEand #endi f is stripped, thus removing the redeclaration.

