Il. Introduction to Data Structure and Abstract Data Types — C-Style Types

A. Introduction (82.1)
One important aspect of the design phase is the selection and design of appropriate data types
to organize the data to be processed; indeed, thisisthe real essence of OOP (object-oriented

programming).

Example 1: Trans-Fryslan Airlines (pp. 30-31)

Attempt 1:
enum Seat St at us { OCCUPI ED, UNCCCUPI ED} ;
Seat Status seatl, seat?2, . . . , seatlO;

Simple data organization, but horrible algorithms for the basic operations!

ALGORITHM TO LIST UNOCCUPIED SEATS
1. If seat 1 is UNOCCUPI ED
Display 1.
2. If seat 2 is UNOCCUPI ED
Display 2.
3. If seat 3 is UNOCCCUPI ED
Display 3.

10. If seat 10 is UNOCCUPI ED
Display 10.

ALGORITHM TO RESERVE A SEAT
1. Set done to false.

2. If seat 1 is UNOCCUPI ED do the following:
a. Display "Do you wish to assign Seat #17'.
b. Get r esponse from user.
c. If responseis'y' thento thefollowing:
I. Set seat 1 to OCCUPI ED.
Ii. Set done to true.
3. If not done and seat 2 is UNOCCUPI ED then do the following:
a. Display "Do you wish to assign Seat #27'.
b. Get r esponse from user.
c. If responseis'y' thento thefollowing:
I. Set seat 2 to OCCUPI ED.
Ii. Set done to true.



Attempt 2:

const int MAX SEATS = 10; // upper Iimt on the nunber of seats

enum Seat St at us { OCCUPI ED, UNOCCUPI ED} ;
t ypedef Seat Status Seat Li st[ MAX_SEATS] ;

Seat Li st seat;
More complex data organization, but much nicer algorithms for the basic operations!

ALGORITHM TO LIST UNOCCUPIED SEATS
1. For nunber ranging from 0 to MAX_SEATS - 1 do the following:

If seat [ nunber] is UNOCCUPI ED
Display nunber

ALGORITHM TO RESERVE A SEAT
1. Read nunber of seat to be reserved.

2. If seat [ nunber] is UNOCCUPI ED
Set seat [ nunber] to OCCUPI ED.
Else
Display a message that the seat having this nunber has already been assigned.

® Quite often there's a tradeoff:
simplicity of data organization « simplicity/elegance of algorithms

Example 2: Searching an online phone directory
Linear search?
OK for Calvin College, but too slow for Grand Rapids or New Y ork

® Amount of datais an important factor. May have to restructure the data set for
efficient processing — e.g., keep it ordered and use binary search or an indexed
sequential search

Example3: Compiler lookup of an identifier's memory address, type, . . . in asymbol table
Linear search? No, too slow
Binary search? No, too much work to keep sorted
Use hash tables

® Number of accesses & speed required is an important factor.

Example 4. Text processing
Storein an array / vector?
OK for text analysis — word counts, average word length, etc.
Not for word-processing — Too inefficient if many insertions & deletions

® Static vs. dynamic nature of the datais an important factor




Definitions

1. An abstract data type (ADT) is:
acollection of related data items
together with
basic relations between them and operations to be performed on them.

Why "abstract?' Data, operations, and relations are studied independently of how they
are going to be implemented.

What not how

Example:
Dataitems. seatsfor TFA
Basic operations. find unoccupied sets, reserve a set, cancel a seat assignment.

2. Animplementation of an ADT consists of
storage structures (commonly called data structures) to store the data items
and
algorithms for the basic operations and relations.

Examples. Attempts1 and 2 for TFA

3. Data abstraction: Separating the definition of a data type from its implementation.

An important concept in software design.

Usually the storage structures/ data structures used in implementation are those provided in a
language or built from them. So we look first at those provided in C++. We begin by
reviewing the smpletypes— i nt , doubl e, etc. — and then the structured ones.



Diagram from p. 33

Fundamental Types Structured Types
. / \ array
Arithmetic voi d pointers struct
uni on
class
i stream
Integral Floating point  bool conpl ex i %séttrrggrpn
(reals) i fstream
of stream
fstream
string
Characters Enumerations I ntegers fl oat vect or
doubl e deque
| | ong doubl e li Stk
char hl nt abgﬁe
unsi gned char short 1 nt -
si gned char long int pri orlrﬁrg/p_queue
unsi gned lti
unsi gned short mlsetrmp
unsi gned | ong mil i set
bi t set
val array

B. Simple Data Types (82.2)

Memory:
2-state devices« bits 0 and 1
Organized into bytes (8 bits) and words (machine dependent — e.qg., 4 bytes).
Each byte (or word) has an address making it possible to store and retrieve contents of
any given memory location.

Therefore:

= The most basic form of data: sequences of bits

= \We can view simple data types (values are atomic — can't be subdivided) as ADTs.

= Implementations have:
Storage structures. memory words
Algorithms. system hardware/software to do basic operations.



1. Boolean data
Datavalues. {f al se, true}

InC/C++: false =0, true =1 (or nonzero)

Could store 1 value per bit, but usually use a byte (or word)

Operations:  and: && (See hit tables on p. 34)
or: ||
not: !
&&| 0| 1 [l o] 1
af oo o| o1
1{ 01 11111
x]Ix
0|1
110

2. Character Data

Store numeric codes (ASCII, EBCDIC, Unicode) in 1 byte for ASCII and EBCDIC,
2 bytes for Unicode (see examples on p. 35).

mononn] Phnofofofjoffaon o ofoffofofofifafofofrfof1]
L T . ¥ M, ¥ M, ¥ s o ]

o A &

S
-

ofojofofojofolofolr{rfojofofifn] [Mlolalalololi[i i [alo]olalo]]
[N > A i, - )
! bi |

Basic operation: comparison to determineif =, <, >, etc. — use their numeric codes



3. Integer Data

Nonegative (unsigned) integer: type unsi gned (and variations) in C++

Store its base-two representation in afixed number w of bits (e.g., w = 16 or w = 32)
88 = 0000000001011000,

(ofojofofofojolofoflfoflfljojolo]

Signedinteger: typei nt (and variations) in C++

Store in afixed number w of bits using one of the following:

a. Sign-magnitude representation

Save one hit for sign (0 = +, 1 = —) and use base-two representation in the other bits.
88 ® 0000000001011000 —88 ® 1000000001011000
sign bit sign bit

® Not good for arithmetic computations

b. Two's complement representation

For n3 0: Useordinary base-two representation with leading (sign) bit O

For —n:
(1) Find w-bit base-2 representation of n
(2) Complement each bit.
(3) Add 1
(From right, change all 1'sup to first O; changethisOtoal.)

Example: —88
1. 88 asal6-hit base-two number 0000000001011000
2. Complement this bit string 1111111110100111

3. Add1 1111111110101000

(L1 [Lji]ifijijajijojljoflfojojo]




® Good for arithmetic computations  (see p. 38)

+[ 011 x| 0]1
of o1 ol ofa

1 1]10 1 o] 1

These work for both + and — integers

S+ T
111- %% carry bits
0000000000000101
+ 0000000000000111
0000000000001100

S+ -6
0000000000000101
+ 1111111111111010

1111111111111111

c. Biased representation

Add a constant bias to the number (typically, 2w - 1);
then find its base-two representation.

Examples:

88 using w = 16 bits and bias of 215> = 32768

1. Add the bias to 88, giving 32856
2. Represent the result in base-two notation: ~ 1000000001011000

Note: For n3 0, just change leftmost bit of binary representation of nto 1

—388:
1. Add the bias to -88, giving 32680
2. Represent the result in base-two notation:  0111111110101000

® Good for comparisons; so, it is commonly used for exponents in floating-point
representation of reals.

d. Problems:
® Overflow: Too many bitsto store.

® Not a perfect representation of (mathematical) integers; can only store afinite
(sub)range of them.



4. Real Data

Typesf | oat and doubl e (and variations) in C++

| EEE Floating-Point Format
Single precision:

1. Write binary representation in floating-point form:
b1.bobz ... 2k with each bj abit and b1 = 1 (unless number is 0)

—_—

mantissa  exponent
or fractional part

2. Store:
— sign of mantissain leftmost bit (0=+,1=-)
— biased binary rep. of exponent in next 8 bits (bias = 127)
— bitsbob3 . . . inrightmost 23 bits. (Need not store b1 — know it's 1)

Example: 22.625 = 10110.101, (seep.4l)
Floating point form: 1.0110101, =~ 24
sipn
o] tofolofofol o folfolfojofolofolofolofolofolofola]ofib]
I_'}:[HTHL'I'Il m'rlr:i.i"';ﬁi-l
Problems:

® Exponent overflow/underflow (p. 41)
Only afinite range of reals can be stored exactly.

= - 1 - =
10 Aoy, 10%

_107¥ -8

® Roundoff error (pp. 41-42)

— Only afinite subset of this range of reals can be stored exactly.
(Most reals do not have terminating binary representations.)

Example: 0.7 =(0.101100110011001100110011001100110.. . .)7
— Roundoff error may be compounded in a sequence of operations.
(Some of the usual laws of arithmetic do not hold — associative, distributive)

— Be careful in comparing realswith==and ! =.



Assignment #2

® Be ableto answer the questionsin Quick Quiz 2.2.
® Write out the following to hand in next Wednesday, Feb. 10:

Exercises2.2 1
10, 12 (Exers 2, 4 in sign-magnitude)
16, 18 (Exers 2, 4 in two's complement)
22,24 (Exers 2, 4 in biased notation)
27, 32, 37, 38, 40, 43

We've been looking at simple types. Now we look at structured data types (also called data
structures) that store collections of data. We will first review/ introduce arrays and structs
from a"traditional" point of view (i.e., asused in C and many other languages). Classes will
be considered in detail very soon. A large part of this course will focus on how these (and
other) data types are used to construct other useful data types.

C. C-Style One-Dimensional Arrays (82.3)

1. Def of an array as an ADT:
A fixed-size sequence (ordered set) of elements, all of the same type, where
the basic operation isdirect access to each element in the array so values can
be retrieved from or stored in this element.

Properties:
« Fixed number of e ements

e Must be ordered so there is afirst element, a second one, etc.

= Elements must be the same type (and size);
\ use arrays only for homogeneous data sets.

= Direct access. Access an element, just by giving its location — the time to access each
element is the same for all elements, regardless of position.

[In contrast to sequential access. To access an element, must first access all those that
precede it.]




2. Declaring arrays in C++

element_type array_hame[ CAPACITY] ;

where

element_type is any type,
array_name isthe name of the array — any valid identifier.

CAPACITY (apositive integer constant) is the number of elementsin the array

® The compiler reserves a block of consecutive memory locations, enough to hold
CAPACITY values of type element_type. (These are consecutive memory locations,
except possibly if CAPACITY or the size of element_type objectsisvery large).

The elements (or positions) of the array, areindexed0, 1, 2, ..., CAPACITY - 1.

Example:
double score[100];

or better, use a named constant to specify the array capacity:

const int CAPACITY = 100;
double score[CAPACITY];

Note Canuse typedeT with array declarations; for example,

const int CAPACI TY = 100;

typedef double ScoresArray[CAPACITY];
ScoresArray score;

® How well does thisimplement the general definition of an array:

Asan ADT In C++

ordered - 3%%%%%® indicesarenumberedO, 1,2, ..., CAPACITY - 1
fixedsize ~ 3% %% %% ® CAPACITY specifies the capacity of the array
sametypeeements - % ® element_type isthetype of elements

direct access ~ ¥ % % ¥ ® Subscript operator [ ]



)

3. Subscript operator

The subscript operator [] isan actual operator and not simply a notation/punctuation as
in some other languages. Itstwo operands are an array variable and an integer index
(or subscript) and is written

array_name[ i]

Here 1 isan integer expression withO £ 1 £ CAPACITY — 1. This subscript operator
returnsa reference to (alias of) the element in location 1 in array name; soit
iIsavariable, called an indexed (or subscripted) variable, whose type is the specified
element_type of the array.

This means that this array reference can be used on the left side of an assignment, in input
statements, etc. to store avalue in a specified location in the array.

Examples:
[l Zero out all the elenents of score

for (int 1
scoreli]

O; 1 < CAPACITY; 1++)
0.0;

/! Read values into the first nuntScores el enents of score

for (int i = 0; i < numScores; i++)
cin >> score[i];

/'l D splay the values stored in the first nuntcores
/'l elenments of score

for (int 1 = 0; 1 < numScores; i++)
cout << score[i1] << endl;

4. Array Initialization
In C++, arrays can be initialized when they are declared.

a. Numeric arrays.

element_type num_array[ CAPACITY] = {list of _initial_values};
Example:

doubl e rate[5] = {0.11, 0.13, 0.16, 0.18, 0.21};

declaresr at e to be an array of 5 real values and intializesr at e asfollows:
0 1 2 3 4

rate | 0.11(0.13[0.16(0.18| 0.21




Note 1: If fewer values are supplied than the declared capacity of the array,
the remaining elements are assigned 0.

double rate[5] = {0.11, 0.13, 0.16};

intializesr at e asfollows:
0 1 2 3 4

rate | 0.11(0.13{0.16| O 0

Note 2: Itisan error if more values are supplied than the declared size of the array,
How this error is handled, however, will vary from one compiler to another.
In Gnu C++ 777

Note 3: If no values are supplied, array elements are undefined (i.e., garbage values).

. Character arrays:
They may be initialized in the same manner as numeric arrays.

Example:
char vowel[5] = {"A", "E", "I, "0", “"U"};
declares vowel to be an array of 5 characters and initializes it as follows:

O 1 2 3 4
vowel A|E|I|O|U

Note 1: If fewer values are supplied than the declared size of the array,
the zeros used to fill unitialized elements are interpreted
asthe null character ' \ 0' whose ASCII codeisO.

Example:
const int NAME LENGIH = 10;

char col |l egeNanme[ NAME LENGTH = {'C, 'a', '"I', "v', "i', '"n"};

initializes col | egeNane asfollows:
o 1 2 3 4 5 6 7 8 9

col | egeNane C| a| I| v| i | n \0|\0 \O|\O




Note 2: Character arrays may be initialized using string constants. For example, the
following declaration is equivalent to the preceding:

char col | egeNanme[ NAME LENGTH = "'Calvin';

Note 3:The null character *\0 " (ASCII codeis0) isused as an end-of-string mark.

Thus, character arrays used to store strings should be declared large enough to
store the null character. If it isnot, one cannot expect some of the string

functions and operations to work correctly. If acharacter array isinitialized with a,
string constant, the end-of-string mark is added automatically, provided thereis

room for it.

Example:

char collegeNane[7] = {"'C, *a', '"I', "v', "i', 'n", "\0'};
char col |l egeNane[7] = "Cal vin";

c. Initializations with no array size specified

The array capacity may be omitted in an array declaration with an initializer list. In
this case, the number of elements in the array will bethe number of values in
the initializer list.

Example:
double rate[] = {0.11, 0.13, O0.16};

Note: This explains the brackets in constant declarations such as

const char INFILE] = "enpl oyee.dat";

5. Addresses

When an array is declared, the address of the first byte (or word) in the block of memory
associated with the array iscalled the base address of the array. Each array reference
Isthen translated into an offset from this base address.

For example, suppose each element of array scor e will be stored in 8 bytes and the base
address of scor e is0x1396. A statement such as
cout << score[3] << endl;

requires that the array reference scor e[ 3] first be translated into a memory address:

score[ 3] ® 0x1396+ 3* si zeof (doubl e)
=0x1396 + 3* 8
= 0x13ae




The contents of the memory word with this address Ox13ae can then be retrieved and
displayed. Anaddress translation likethisis carried out each time an array element is
accessed.

For an array variable array_name, itsvalueis actually the base address of
array name and array name + index istheaddressof array_ name[ index] .
An array reference

array_name[ index]
Isequivaent to
*(array_name + index)

Here, * isthedereferencing operator;

*ref returnsthe contents of the memory location with address ref.

For example, the statement
cout << score[3] << endl;

could also be written
cout << *(score + 3) << endl;

Note: No bounds checking of indicesis done! (See pp. 50-51)

D. C-Style Multidimensional Arrays
1. Introduction

Example: Suppose we wish to store and process a table of test scores for several different
students on several different tests:

Testl Test?2 Test3 Test4
Student 1 99.0 93.5 89.0 91.0
Student 2 66.0 68.0 84.5 82.0
Student 3 88.5 78.5 70.0 65.0

Student-n  100.0 995 1000  99.0

Use atwo-dimensional array.




2. Declaring two-dimensional arrays
a. Usual form of declaration:

element_type array_name[ NUM_ROWS] [ NUM_COLUMNS] ;

Example:

const int NUM ROA5 = 30,
NUM COLUWMNS = 5;

doubl e scoresTabl e[ NUM ROA5] [ NUM COLUWNS] ;
or using at ypedef :

const int NUM ROA5 = 30,
NUM COLUWMNS = 5;

t ypedef doubl e TwoD mArray[ NUM ROAS] [ NUM COLUWNS] ;
TwoD mArray scoresTabl e;
b. Initializing

List theinitial valuesin braces, row by row; may use internal braces for each row to
improve readability.

Example:

doubl e
rates[2][3] = {{0.50, 0.55, 0.53}, /[l first row
{0.63, 0.58, 0.55} }; [/ second row

3. Processing two-dimensional arrays
Use doubly-indexed variables:

Example: scor esTabl e[ 2] [ 3] istheentry in row 2 (numbered from 0) and
column 3 (numbered from 0)

row index column index
Typically use nested loops to vary the two indices, most often in arowwise manner.



Example:

i nt nunBtudents, nuniTests,
i, ] /1 indices;

cout >> "# students and # of tests? ";
cin >> nunBtudents >> nunilests;

cout << "Enter " << nuniffests << " test scores for student\n";
for (i =0; I < nunBtudents; i++)

{

cout << '"#' << +1<<"':";

for (j =0; j < nuniests; j++)
cin >> scoresTable[i][]];

4. Higher-Dimensional Arrays
The methods for two-dimensional arrays extend in the obvious way.

a. Example: To store and process a table of test scores for several different students on
several different testsfor several different semesters:

const int RANKS = 10, ROA5 = 30, COLUWNS = 5;
t ypedef doubl e ThreeD mArray[ RANKS} [ ROAB] [ COLUMNS;

ThreeD nArray gradeBook;

gr adeBook[ 4] [ 2] [ 3] isthe score on page 4 (numbered from 0)
for student 2 (numbered from 0)
on test 3 (numbered from 0)

b. Still higher dimensions
Example like the automobile-inventory example on pp. 54-5

enum BrandType {Levi, Wangler, CalvinKl ein, Lee, BigYank, NUM BRANDS};
enum Styl eType {baggy, tapered, straightleg, designer, NUM STYLES};
enum Wai st Type {w28, w29, w30, w31, w32, w33, w34, w35, w36,
w37, w38, w39, w40, w4l, w42, w43, w44, w45,
wA6, w47, w4a8, NUM WAl ST_SI ZES} ;
enum | nseamlype {i 26, 127, 128, 129, 130, 131, 132, 133, i34, i34, i36,
NUM_| NSEAM S| ZES};

typdef int
JeansAr r ay[ NUM BRANDS] [ NUM STYLES] [ NUM WAI ST_SI ZES] [ NUM | NSEAM SI ZES] ;

JeansArray jeanslnSt ock;



The value of

j eansl nSt ock[ Levi ] [ Desi gner] [w32] [i 31]
isthe number of Levi'sdesigner 32~ 31 jeansthat arein stock. The statement

j eansl nSt ock[ brand] [ styl e][wai st][i nsean]--;

might be used to record the sale (i.e., decrement the inventory) of one pair of jeans of
brand br and, style st yl e, waist size wai st , and inseam length i nseam

5. Arrays of Arrays

Consider again the declaration
doubl e scoresTabl e[ 30] [ 4] ;

Thisisreally adeclaration of aone-dimensional array having 30 elements, each of which
iIsaone-dimensional array of 4 real numbers; that is, scor esTabl e isaone-dimensional
array of rows, each of which has4 real values. Thisdeclaration isthus equivalent to a
declaration like

typedef double RowOfTable[4];

RowOfTable scoresTable[30];
or, sincet ypedef isused once, why not use it twice:

typedef double RowOfTable[4];
typedef RowOfTable TwoDimArray|[30];

TwoDiImArray scoresTable;

With any of the declarations, we can always view atwo-dimensional array like
scor esTabl e asan array of rows of atable. In fact,

scoresTabl e[ i] isthe 1-th row of the table.
Then, scoresTabl e[i][]] should bethought of as (scoresTable[i])[]j], that
IS, asfinding the j -th element of scoresTabl e[i].

Address Translation:
This array-of-arrays structure of multidimensional arrays also explains how address
translation is carried out. Suppose the base address of scor esTabl e is 0x12345:

scoresTabl e[ 10] [ 3]
® 0x12345+ 10 * si zeof (RowOr Tabl e) + 3 * si zeof (doubl e)
=0x12345+ 10* 4 * si zeof (doubl ) + 3* si zeof (doubl e)
=0x12345+ (10* 4+ 3) * 8
= 0x1249d

What about higher-dimensional arrays?
An n-dimensional array should be viewed (recursively) as a one-dimensional
array whose elements are (n - 1)-dimensional arrays.



6. Arrays as Parameters

Passing an array to a function actually passes the base address of the array. Thusthe
parameter has the same address as the argument, so modifying the parameter will modify
the corresponding array argument.

This also means that the array capacity is not available to the function unless passed as a
separate parameter.

Example: Invoid Print(theArray[100], int theSize);
can just aswell use:

void Print(theArray[], int theS ze);

Now, what about multidimensional arrays?
void Print(double table[][], int rows, int cols)

doesn't work. Best to use atypedef to declare a global type identifier and use it to declare
the types of the parameters.:

For example,
t ypedef doubl e TwoD mArray[ 30][4];
TwoD mArray scoresTabl e;

void Print(TwoDmArray table, int rows, int cols)

Assignment #2: Due: Friday., Feb. 19

Be able to answer questions in Quick Quiz 2.3

P.61: 1, 3,5,6,38, 10,11, 13, 15,17, 19



Problems with C-Style Arrays

a. Capacity cannot change.
b. Vrtually no predefined operations or functions on non-char arrays.

® Must pass size (and/or capacity) to array-processing functions.

c. Deeper Problem: In OOP, objects should be self-contained .

® C-style arrays aren't.

Solution (OOP): Encapsulate array, capacity, size, and operations in a class.

® vector



E. Intro. to Structs

1. When is a structure needed?
Up to now, our approach to designing a program (and software in general) has been:

1. ldentify the objects in the problem.
la. ...
2. ldentify the operations in the problem.
la. If the operation is not predefined, write afunction to perform it.
1b. If the function is useful for other problems, storeitinalibrary.
Organize the objects and operations into an algorithm.
Code the algorithm as a program.
Test, execute, and debug the program.
6. Maintain the program

ok~ w

Since predefined types may not be adequate, we add:

la. If the predefined types are not adequate to model the object,
create a new data type to model it (e.g., enumerations).

Now, suppose the object being modeled has multiple attributes.

Examples :
A temperature has:
— adegrees attribute
— a scale attribute (Fahrenheit, Celsius, Kelvin)

|32 | Fl
degrees scale

A date has:
— amonth attribute
— aday attribute
— ayear attribute

| Sept enber | 23 [1998]|
month day vyear

C++ provides structs and classes to create new types with multiple attributes. So we
might add to our design methodol ogy:

1. Identify the objects in the problem.
la If the predefined types are not adequate to model the object,
create a new type to model it.
1b. If the object has multiple attributes, create a struct or class to represent
objects of that type.




2. Asan ADT, astructure (usually abbreviated to struct and sometimes called arecord) is
like an array in that it is has a fixed size, it is ordered, and the basic operation is direct
access to its members so that items can be stored in / retrieved from them; but it differs
from an array in that its elements may be of different types.

3. Declaration (C-style):
struct TypeName

decl arations of nenbers //of any types

}
4. Examples:
a. Temperature:
|32 | Fl
degrees scale
struct Tenperature
doubl e degree; // nunber of degrees
char scal e; /1l tenp. scale (F, C K ...)
}
Tenperature tenp;
b. Date:
| Sept enber | 23 [1998]|
month day vyear struct Date
string nonth; /1 name of nonth
I nt day, /' day nunber
year ; /'l year nunber

Hi

Dat e birt hDay,
current Dat e;



c. Phone Listing:
[John Q Doe| 12345 Calvin Rd.| Gand Rapids, M [ 9571234 |
name street city & state phone #

struct DirectoryListing

{

string nane, /'l nane of person
street, /] street address
ci tyAndSt at e; /] city, state (no zip)

unsi gned phoneNunber; // 7-digit phone nunber

b
DirectoryListing entry, /1 entry in phone book
group[20]; // array of directory |istings
d. Coordinates of a point: (Members need not have different types.)
| 3.73 | —2.51 |

x coord. Yy coord.
struct Poi nt

doubl e xCoor d,

yCoor d;
b
Point p, qQ;
e. Test scores: (Members may be structured types — e.g., arrays.)

012345 | 83 [79(92] 85 |
id-number list of scores

struct Test Record

{
unsi gned i dNunber,

. score[4];

Test Record student Record, gradeBook[ 30];



Heirarchical (or nested) structs

Since the type of a member may be any type, it may be another struct. For example,
[John Q Doe| 12345 Cal vin Rd. [Grand Rapids, M[9571234|June| 17/ 1979 3. 95[92. 5 |
name street city & state phone # month day year gpa credits
\ DirectoryListing /\ Date / real red

struct Personal I nfo

DirectoryListing ident;
Date birth;
doubl e cunGPA,
credits;
};

Per sonal | nfo student:

6. The scope of amember identifier isthe struct in which it is defined.

Consequences.
— A member identifier may be used outside the struct for some other purpose.
— A member cannot be accessed outside the struct just by giving its name.

7. Direct access to members of a struct (or class) isimplemented using member access

operators: one of theseisthedot operator (.)
struct_var.member_name

Examples:
Input a value into the nont h member of bi rt hday:
cin >> birthDay. nont h;

Calculate y coordinate of apoint ony = 1/x:
I f (p.xCoord !'= 0.0)
p.yCoord = 1.0 / p.xCoord;

Sum the scoresin st udent Recor d:
doubl e sum = 0O;
for (int 1 =0; 1 < 4; i++)
sum += st udent Record. score[i];

Output the name stored in student:
cout << student.ident.nane << endl;



F. A Quick Look at Unions (p. 68)

1. A union has adefinition like that of a struct, with "struct" replaced by "union":
union TypeName - %%%%%% TypeName is optional
declarations of members //of any types

¥

2. A union differs from a struct in that the members share memory. Memory is
(typically) allocated for the largest member, and all the other members share this memory.

Example:

#i ncl ude <i ostrean»
usi ng nanmespace std;

struct Struct

{.
int i;
doubl e d;
bool b;
}s
uni on Uni on
{
int i;
doubl e d;
bool b;
}s
int main()
Struct s;
Uni on u;
S.i = 1234567809;
u.i = 123456789;
cout << "Structure: " << s.i << " and " << s.d << "
<< (s.b ? "true" : "false") << endl;
cout << "Union: " << Ul <<" and " << u.d << "
<< (u.b ? "true" : "false") << endl;
s.d = 0.123;
u.d = 0.123;
cout << "Structure: " << s.i << " and " << s.d << "
<< (s.b ? "true" : "false") << endl;
cout << "Uni on: "< Ul o <<" and " << u.d << "
<< (u.b ? "true" : "false") << endl;
s.b = true;
u.b = true;
cout << "Structure: " << s.i << " and " << s.d << "
<< (s.b ? "true" : "false") << endl;
cout << "Uni on: "< Ui o <<" and " << u.d << "
<< (u.b ? "true" 'false") << endl;



Execution:

Structure: 123456789 and 6.95336e-310 fal se
Uni on: 123456789 and 3.21193e-273 true
Structure: 123456789 and 0.123 fal se

Uni on: 1069513965 and 0.123 true
Structure: 123456789 and 0.123 true

Uni on: 97517 and 2.

06932e-309 true

Note: If dataisstored in aunion using one member and accessed using another member of
adifferent type, the results are implementation dependent.

3. Example: Suppose afile contains:

John Doe 40 M

January 30 1980

Mary Smith Doe 8
Fred Jones 17 S

T

Jane VanderVan 24 D
February 21 1998 N
Peter VanderVan 25 W
February 22 1998 Y

<——— name, age, marital status (married)

< wedding date

< Spouse, # dependents

< name, age, marital status (single)

< available

< name, age, marital status (divorced)
<———divorce date, remarried (No)]

< name, age, marital status (widower)
<——— date became awidower, remarried (Y es)

Since there are three types of records, we would need three types of structs:

struct MarriedPerson

{
string nane;
short age;
char mar St at us; /
Dat e weddi ng; /
string spouse; /
short dependents; /

struct Singl ePerson
{

string nane;

short age;

char mar St at us;

bool avail abl e; /
struct WasMarri edPer son
{

string nane;

short age;

char nmar St at us;

Dat e di vor ceOr Deat h;

char renarri ed;

/| S =single, M= married, W= was married
/| date s/ he was married
/ name of spouse

/ nunber of dependents

/| true if person is available, else false

/1 date s/he was divorced/ w dow er)ed
/1 Y or N



4. Structs like these with some common members — fixed part — but other fields that are different
can be combined into a single structure by using aunion — to add a variant part.

struct Date
{

string nonth;
short day, year;

struct Marriedlnfo

Dat e weddi ng;
string spouse
short dependents;

struct Singlelnfo

bool avail abl e;
}s
struct WasMarri edlnfo

Dat e di vor ceOr Deat h;
char renarri ed;

b
struct PersonalInfo
{
string nane;
short age;
char marStatus; // Tag: S =single, M= married, W= was narried
uni on
Marri edl nfo marri ed;
Si ngl el nfo singl e;
WasMarri edl nfo wasMarri ed;
1
1

Per sonal I nf o person;

Typically process such a structure using aswi t ch for the variant part: e.g.,

cin >> person. name >> person.age >> person. mar St at us;
sw t ch( Per son. mar St at us)

case 'M: cin >> person. narried. weddi ng. nont h
>> person. marri ed. weddi ng. day
>> person. marri ed. weddi ng. year
>> person. narried. spouse
>> person. marri ed. dependent s;
br eak;
case 'S : cin >> avail abl e;
br eak;
case 'W: cout << "Enter . . . ";
cin >> person.wasMarri ed. di vorceOr Deat h. nont h
>> person. wasMarri ed. di vor ceOr Deat h. day
>> person. wasMarri ed. di vor ceOr Deat h. year
>> person.washMarried. remarri ed,



5. Address tranglation for structs and unions: (p. 70)

enum Year | nSchool {fresh, soph, jun, sen, spec};
struct Student Record

i nt nunber;

char nane[ 21];
doubl e score[ 3];
Year | nSchool vyear;

}

// Personal Info as before
St udent Record s;
Per sonal I nfo p;

Addresses:

s = 0x33al8

p = 0x339d8

Struct S

0x33al8 nunber

0Ox33alc nane

0x33a38 score

0x33a50 year

Struct P:

0x339d8 nane

0x339ee age

0x339f 0 mar St at us

0x339f 2 marri ed. weddi ng. nont h

0x339f c marri ed. weddi ng. day

0x339f e marri ed. weddi ng. year

0x33a00 marri ed. spouse

0x33al6 narri ed. dependents

0x339f 2 wasMarri ed. di vor ceOr Deat h. nont h
0x339f ¢ wasMarri ed. di vor ceOr Deat h. bay
0x339f e wasMarri ed. di vor ceOr Deat h. year
0x33a00 wasMarried.remarried

If astruct s hasfieldsfy, ..., fn, requiring wi, ..., wy cells of storage, respectively:

Address of s.fy = base address of s + offset
k-1
= baseaddressof s + Jwj
i=1
For structs like p that contain unions. Allocate space for the largest variant, and then
overlay variantsin this space.



6. These kinds of variant structures aren't used much anymore. (p. 69)

Instead, in OOP languages.
» Encapsulate the common information in a base class
» Useinheritance to build derived classesfor the variants
(Derived classes inherit al of the non-private members of the base class.)

Per sonal | nfo

namne
base class— | age
mar St at us
| name : | hane : ! nane :
. . age : , age : | age :
derived classes —® | 'nmarStatus | ' mar Status | | mar St atus |
weddi ng avai l abl e di vorceOrDeat h
Zpouiz nt Si ngl ePer son remarried
epenaent s WasMar ri edPer son

Marri edPer son

G. A commercial for OOP

Two programming paradigms:

Procedural: commonly used withprocedural languages such as C, FORTRAN, and Pascal
Action-oriented — concentrates on the verbs of a problem's specification

Programmers.
* |dentify basic tasks to be performed to solve problem
* Implement the actions required to do these tasks as subprograms
(procedures/functions/subroutines)
» Group these subprograms into programs/modul ed/libraries, which together make up a
complete system for solving the problem

Object-oriented: Usesin OOP languages like C++, Java, and Smalltalk
Focuses on the nouns of a problem's specification

Programmer:
» Determine what objects are needed for a problem and how they should work together to
solve the problem.
» Createtypes called classes made up ofdata members and function members to operate
on the data. Instances of atype (class) are called objects.



An Example — Creating a Data Type in a procedural (C-type) language (pp. 74-78)

Problem: Create atype Ti e for processing times in standard hh:mm AM/PM form
and in military-time form.

Data Members:
Hours (0, 1, ..., 12)
Minutes (0, 1, 2, ..., 59)
AM or PM indicator (‘A' or 'P")
MilTime (military time equivalent)

Some Operations :

1. Setthetime

2. Display thetime

3. Advancethetime

4. Determineif onetimeisless than another time.

| mplementation:

1. Need storage for the data members — use astruct
2. Need functions for the operations.
3. "Package" declarations of these together in a header file.

R N 1 T ¢ B e T
This header file defines the data type Time for processing tine.
Basi ¢ operations are:

Set : To set the tinme

D splay: To display the tine

Advance: To advance the tinme by a certain anount
LessThan: To determne if one tinme is |ess than another

#i ncl ude <i ostrean»
usi ng nanmespace std;

struct Tinme

unsi gned hour,

m nut e;
char AMor PM
unsi gned m | Ti ne;

}

1 Al OI' 1 Pl

/Il
[/ mlitary time equival ent



/* Set sets the time to a specified val ues.
*
* Recei ve: Ti me obj ect t
* hours, the nunber of hours in standard tine
* m nutes, the nunber of mnutes in standard tine
* AVPM (A if AM 'P if PM
*  Pass back: The nodified Tinet with data nenbers set to
* t he specified val ues
*

*****************************************************************/

void Set(Tine & t, unsigned hours, unsigned mnutes, char AWM ;

/* Display displays tine t in standard and mlitary format using
* out put stream out.

* Recei ve: Time t and ostream out
*  Qutput: The time T to out
* Pass back: The nodifi ed ostream out

******************************************************************/

void D splay(const Tine & t, ostream & out);

/* Advance increnments a tine by a specified val ue.

*

* Recei ve: Ti me obj ect t

* hours, the nunber of hours to add

* m nutes, the nunber of mnutes to add

* Pass back: The nodified Tine t with data nenbers i ncrenent ed
* by the specified val ues

*

*****************************************************************/

voi d Advance(Tine & t, unsigned hours, unsigned m nutes);

/* Determne if one tine is |l ess than another tine.
*

* Receive: Tinmes tl and t2
*  Return: True if t1 < t2, fal se ot herw se.

******************************************************************/

bool LessThan(const Tine & t1, const Tine & t2);




[ ========= Tine.cpp -- inplenments the functions in Tinme. h =========

#i ncl ude "Ti nme. h"

[*** Wility functions -- mght be added as basic operations |ater ***/
int ToMIlitary(unsigned hours, unsigned m nutes, char AVPM;

voi d ToStandard(unsigned mlitary,
unsi gned & hours, unsigned & mnutes, char& AWM ;

void Set(Tine & t, unsigned hours, unsigned m nutes, char AVPM

if (hours >= 1 && hours <= 12 &&
mnutes >= 0 && nminutes <= 59 &&

(ampm="A || ampm=="FP"))

{

t.hour = hours;

t.mnute = m nutes;

t. AMbr PM = AVPM

t.mITime = ToMIlitary(hours, mnutes, AWM;
}
el se

cout << "*** Can't set tine with these values ***\n";
/1 t remains unchanged

}

void D splay(const Tine & t, ostream & out)

out << t.hour << ':'
<< (t.mnute <10 ? "0" : "") << t.mnute
<< ' ' << t.AMIPM<< ".M ("
<t.mlTime <<" ml. tinme)";

}

voi d Advance(Time & t, unsigned hours, unsigned m nutes)

/1 Advance using mlitary tine
t.mI|Tinme += 100 * hours + m nutes;
unsigned mlHours =t.mlTime / 100,

mlIMns =t.mlTime % 100;

/1 Adjust to proper fornat
mlHours += mlIMns / 60;
mlMns % 60;
m | Hours % 24;
t.mlITinme = 100 * mlHours + ml| M ns;

/1 Now set standard tine
ToStandard(t.m | Tine, t.hour, t.mnute, t.AMIrPM;
}

bool LessThan(const Tinme & t1l, const Tine & t2)

return (t1l.mlTine <t2.mlTime);



[x***% UTI LI TY FUNCTI ONS *****/

/* ToMlitary converts standard time to mlitary tine.

*

* Receive: hours, mnutes, AVPM
* Return: The mlitary tinme equival ent

******************************************************************/

nt ToMlitary (unsigned hours, unsigned m nutes, char AWM

——

I f (hours == 12)
hours = 0;
return hours * 100 + mnutes + (AVPM == "P" ? 1200 : 0);
}

/* ToStandard converts mlitary tinme to standard time.
*
* Receive: mlitary, atime in mlitary fornmat
* Return: hours, mnutes, AVWPM -- equival ent standard tine

*******************************************************************/

voi d ToStandard(unsigned mlitary,
unsi gned & hours, unsigned & mnutes, char & AMPM
{

hours = (mlitary / 100) % 12;
if (hours == 0)
hours = 12;
mnutes = mlitary % 100;
AWM = (military / 100) < 12 2 'A : 'P;



| | ========= Test driver =========
#i ncl ude <i ostreanr

#i ncl ude "Tine. h"

uses nanespace std;

int main()

Ti ne neal Ti ne,
goToWr kTi ne;

Set(neal Tine, 5, 30, 'P);
cout << "We'll be eating at ";
D spl ay(neal Ti ne, cout);

cout << endl;

Set (goToWr kTine, 5, 30, '"P); [l Try other values also: "A ->"

cout << "You |l eave for work at ";
D spl ay(goToWr kTi ne, cout);
cout << endl;
i f (LessThan(Meal Ti ne. goToWrKkTi ne))

Icout << "If you hurry, you can eat first.\n";
el se

cout << "Sorry you can't eat first.\n";

Advance(goToWr kTi ne, 0, 30); /'l Try other values also: 0 -> 12)
cout << "You go into work later at ";
Di spl ay(goToWr kTi e, cout);
cout << endl:
i f (LessThan(Meal Ti ne. goToWr kTi ne))

cout << "If you hurry, you can eat first.\n";
el se

cout << "Sorry you can't eat with us.\n";
cout << endl;

}
Execution:

W'|ll be eating at 5:30 PP.M (1730 ml. tinme)

You | eave for work at 5:30 P.M (1730 ml. tine)
Sorry you can't eat first.

You go into work later at 6:00 PP.M (1800 ml. tinme)
I f you hurry, you can eat first.



7. Problems with C-Style Arrays

a. The capacity of a C-style array cannot change.

Solution 1 (non-OOP): Use run-time arrays.

— Construct B to have required capacity

— Copy elements of A into first part of B

— Deadllocate A

Solution 2 (OOP): Usevect or swhich do this automatically.

b. There are virtually no predefined operations or functions on non-char arrays.

Basic reason for this disparity:

There is no numeric equivalent of the NUL character that can be used to mark the end
of a sequence of numbers.

Start Quit.
processing processing
here here
Y Y
name | J o) h n D o) e \0 | \O
[0 [1] [21 [31 [4 [5 [6 [71 [8 1[9
Start .
processng rocessin
helre Iowhere. 7.
v
intArray | 6 2 0 1 5 2 0 0 0 0

(0]

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]



Solution 1 (non-O0P):  In addition to the array, passits size (and perhaps its
capacity) to functions.

Example: Function to output an array of doubl es:
void Print(ostream & out, double theArray[], int itsSize)

for (int i =0; 1 < 1tsSize; i++)
out << theArray[i] << endl;
}
Function call: Print(cout, dubArray, dubArraySi ze);

Example: Function to input an array of doubl es:

void Read(istream & in, double theArray[],
const int ITS_CAPACITY, 1nt & i1tsSize)

{
1tsSize = O;
for (;)
{
in >> theArray[ 1tsSize];
if (in.eof()) break;
1tsSize++;
if (1tsSize >= ITS_CAPACITY) // prevent out-of-range error
{
cerr << "\nRead warning: array is full!\n";
return;
}
}
}
Function call: int nySi ze;

Read(ci n, dubArray, CAPACTY, nySi ze);

e The Deeper Problem.
One of the principles of object-oriented programming is that an object should be
autonomous (self-contained), which means that it should carry within itself all of the
information necessary to describe and operate upon itself.

C-style arrays violate this principle. In particular, they carry neither their size nor
their capacity within them, and so C-style arrays are not self-contained objects.

Solution 2 (OOP): Encapsulate all three pieces of information — the array, its capacity
and itssize— within aclass. Thisisthe approach used by the vect or <T> class
template.




