X. OOP & ADTs: An Introduction to Inheritance
(Chap. 12)

A. Inheritance, OOD, and OOP (812.1 & 12.2)

A major objective of OOP: writing reusable code (to avoid re-inventing the wheel).

Ways we have done this:

» Write functions

* Build classes

» Store classes and functions in separately compiled libraries
» Convert functions into function templates

» Convert classes into class templates.

Most distinctive way to achieve reusability in OOP:

* Inheritance: Derive aclass from another class, reusing the work done in building
one class to build another classthat isjust avariation.

Example: Suppose a problem requires stack operations not provided in our St ack class.

“Old-fashioned” approach: Add new member functions to this class that implement the needed
operations.

Bad: Can easily mess up atested, operational class, creating problems for other client
programs

Object-oriented approach: Derive a new class (say, Deri vedSt ack) from class St ack, which
Is called the parent class of Deri vedSt ack.

Good:

— Derived class inherits all of the members of its parent class (including its operations)
so need not reinvent the wheel

— Mistakes made in building Der i vedSt ack will belocal to it — original St ack class
remains untainted and client programs are not affected

Object-oriented design (OOD) isto engineer one's software as follows:

1. Identify the objects in the problem;
2. Look for commonality in those objects;
3. Where there is commonality:
* Define base classes containing that commonality; and
* Derive classes that inherit the commonality from the base class.

These last two steps are the most difficult aspects of OOD.

Object-oriented programming (OOP): first used to describe the programming
environment for Smalltalk, the earliest true object-oriented programming language

Three important properties of OOP languages :

= Encapsulation
= Inheritance
= Polymorphism, with the related concept of dynamic or late binding

B. Derived Classes

Problem: Create typesto model various kinds of licenses .

Critical question: What attributes do all licenses have in common?

Then store these common attributes.in a general (base) classLi cense:
cl ass License

public:
/1 Function nmenbers Display(), Read(),

private: /'l we'll change this in a mnute
| ong nyNumnber ;
string nyLast Nane,
nyFi r st Name;
char nyMddl el nitial
i nt nyAge;
Dat e nyBirt hDay; I/l Date is a user-defined type

1

For the various kinds of licenses, we could include a data member of type Li cense and then
add new members:

class DriversLi cense
{
public:
private:
Li cense conmmon;
i nt nmyVehi cl eType;
string nyRestrictionsCode;
}s
cl ass Hunti ngLi cense
{
publ i c:
private:
Li cense comon;
sring thePrey;

Dat e seasonBegi n,
seasonEnd;

b

cl ass Pet Li cense
{
public:
private:
Li cense common;
string nyAni mal Type;
}s

Inclusion works, but is "clunky" and inefficient.

Hunt i ngLi cense h;

h. common. D spl ay(cout) ;

Worse, it's bad design! It should bethat aDri ver sLi ncense isa Li cense, nota
Dri versLi ncense hasaLi cense.

Preferred approach: inheritance. Derive more specialized license classes from the base
class Li cense, and add new members to store and operate on their specialized attributes.

Problem:
Private class members cannot be accessed within derived classes.

C++ solution:
Members declared to be pr ot ect ed: can be accessed within a derived class, but they
remain inaccessible to programs or non-derived classes that use the class (except for
friend functions).

So change the private section in class Li cense to a protected section:

cl ass License

{
public:
/1 Function nenbers Display(), Read(),

protected:
| ong nyNunber ;
string nyLast Nane,
nyFi r st Nane;
char nyMddlelnitial;
int nyAge;
Dat e nyBi rt hDay;

h

Now we can derive classes for the more specialized licenses from Li cense:

class DriversLicense : public License
{

public:

pr ot ect ed:

i nt nyVehi cl eType;
string nyRestrictionsCode;

1
class HuntingLi cense : public License
public:

pr ot ect ed:
sring thePrey,;
Dat e seasonBegi n,
seasonEnd;

cl ass Pet Li cense :
{
public:

pr{Qéte:
string nyAni mal Type;

H

ClasseslikeDri ver sLi cense, Hunt i ngLi cense, and Boat i ngLi cense are said to
be derived classes (or subclasses), and the class Li cense from which they are derived

iscaled abase class or parent class

We have used protected sections rather than private onesin these drived classesin caseitis

public License

necessary to derive "second-level" classes such as.

cl ass Mooseli cense :

{
public:
prbfécted:
i nt theAntl er Maxi mum
i nt theBul | wi nkl eFact or

Thisleadsto class hierar chies — usually picture as atree but with arrows is drawn from a

derived class to its base class:

public HuntingLicense

/ License\
Drivers Hunting Pet
License License License
/ \ / \ / \
Car Unicycle Moose Dinosaur Dog Hamster
License License License License License License

General form of declaration of a derived class:

DerivedClassName : ki nd_of i nheritance BaseClassName

{

/'/' 'new data nenbers and functions for derived cl ass

}

ki nd_of i nheritance isusualy the keyword publ i c,
but it may be private or protected

The Fundamental Property of Derived Classes:

* Inherit the members of base class (and thus the members of all ancestor classes).
» Cannot access private members of base class

» Kind of access to public and protected members of base class depends on the
kind of inheritance specified.

publ i c public and protected, respectively
private private
pr ot ect ed protected

Most common is public inheritance:

Can use public and protected members of base class in base class just as
though they were declared within the derived class itself.

It givesriseto theis-a relationship:

If
cl ass Base : public Derived

{
3
Then
A Deri ved object is a Base object.

/! ... nmenbers of Beta ..

For example: A Hunti ngLi cense isali cense
A Mooseli cense isaHunti ngLi cense
A Mboseli cense isalicense

Thisisin contrast to the has-a relationship (aso called the inclusiong or containment
relationship or class composition). This was the situation with our first attempt at modeling
licenses. Another example isthe relationship between Li cense and Dat e: A Li cense
object has a Dat e object, but it is not a Dat e oject.

Design Principle: Don't use public inheritance for the has-a relationship.

For example, it is bad design to do the following just to get the members of one class
into another:

class BusDriver : public License

(...

Rather, we should use:

cl ass BusDri ver

{

privat e:
Li cense nyLi cense,;

A third relatioship between classesisthe uses relationship: One class might smply use
another class. For example, aFee() member functionin alLi censePl at e class might have
a parameter of type Dri ver sLi cense. But thisclass simply usesthe Dri ver sLi cense
class—itisnotaDri ver sLi cense and it does not have aDri ver sLi cense.

It's not always easy to tell which isthe appopriate one to use. Two useful testsin deciding
whether to derive Y from X:

1. Do the operationsin X behave properly in Y?

2. (The"need-ause-a" test): If all youneedisa, canyou usean X?

Summary:

The OOP approach to system design is to:

1. Carefully analyze the objects in a problem from the bottom up.

2. Where commonality exists between objects, group the common attributes

into a base class:

Attributes Attributes
Common Common
to Object 1 to Object j
thru Object | thru Object n
/) /)
Object | Object | Object n

Object 1

3. Then repeat this approach “upwards’ as appropriate:

Attributes Common
to Object 1 thru Object n

A

Attributes

Common
to Object 1
thru Object |

W

™~

Attributes

Common

to Object |
thru Object n

Once no more commonality exists, OO implementation then:

4. Proceeds from the top down, building the most general base class(es):

Attributes Common
to Object 1 thru Object n

5. The less-general classes are then derived (publicly) from that base class(es):

Attributes Common
to Object 1 thru Object n

N

Attributes Attributes

Common L Common

to Object 1 to Object |
thru Object | thru Object n

6. Derivations continue until classes for the actual objectsin the system are built:

7. These classes can then be used to construct the system’ s objects.

C. Another Example:

Suppose we are told to write a payroll program.

Following the four OOD steps, we proceed as follows:
1. Identify the objects in the problem:

» Salaried employees
* Hourly employees

2. Look for commonality in those objects. what attributes do they share?

* |d number
* Name
* Department

3. Define a base class containing the common data members:
cl ass Enpl oyee

pr ot ect ed:

| ong nyl dNum /'l Enpl oyee's id nunber

string nyLast Nane, /1 " | ast name

nyFi r st Nane; /1 ! first nane

char nyMddlelnitial; /1l ! mddle initia

i nt nyDept Code; Il depart nment code

/1 ... other menbers common to all Enpl oyees
public:

[l ... various Enployee operations ...

}

4. From the base class, derive classes containing special attributes:

a. A salaried employee class:

cl ass Sal ari edEnpl oyee : public Enpl oyee
{
public:

/1 ... salaried enpl oyee operations ...

pr ot ect ed:
doubl e nySal ary;

b
b. An hourly employee class:
cl ass Hourl yEnpl oyee : public Enpl oyee
public:
/1 ... hourly enpl oyee operations ...

pr ot ect ed:
doubl e nyWeekl yWage,
myHour sWr ked,
nmyOver Ti neFact or;

Reusability:

Suppose Enpl oyee has an output member function Pri nt () :
voi d Enpl oyee:: Print(ostream & out) const

out << nyldNum<< ' ' << nyLastNane << *, “ << nyFirstNane <<’
<< nyMddlelnitial << " " << nyDept Code;
}

In derived classes, we can overload Pri nt () with new definitions that reusethe Pri nt ()
function of class Enpl oyee:

voi d Sal ari edEnpl oyee: : Print(ostream & out) const

Empl oyee: : Print (out); /linherited nenber
out << "\n$" << nySalary << endl; /11 ocal nenber

}
and

voi d Hour | yEnpl oyee: : Print(ostream & out) const

Enpl oyee: : Print(out); /linherited nmenber
out << "\n$" << nyWekl yWwage << endl /11 ocal nenbers
<< nyHour sWrked << endl << nyOverTi neFactor << endl;

}

Note: A class Deri v derived from Base can call Base: : F() to reuse the work of the
member function F() from the base class.

Constructors and Inheritance:
Consider Enpl oyee's constructor:

/1 Explicit-Value Constructor

i nl i ne Enpl oyee: : Enpl oyee(long id, string last, string first,
char initial, int dept)

{

nyl dNum = i d;

nyLast Nane = | ast;
nyFirstName = first;
nyMddlelnitial = initial;
nyDept Code = dept;

}

A derived class can use amember-initializer list to call the base-class constructor to
initialize the inherited data members — easier than writing it from scratch.

/1 Definition of SalariedEnpl oyee explicit-val ue constructor
i nline Sal ari edEnpl oyee: : Sal ari edEnpl oyee(long id, string last, string first,
char initial, int dept, double sal)
Enpl oyee(id, last, first, initial, dept)

nySal ary = sal;

General form of Member-Initializer List Mechanism:
Derive: : Derive(ParameterList) : Base(ArgList)

/] initialize the non-inherited nenbers in the usual manner ..

}

Initializations in a member-initializater-list are done first, before those in the body of the

constructor function.

Member-initializater list can also be used to initialize local data members in the derived
class:

Data member d of aderived class can beinitialized to an initial valuei using the
unusual function notation d(i) inthe member-initializer list.

Example:
Sal ari edEnpl oyee: : Sal ari edEnpl oyee(long id, string last, string first,
char initial, int dept, double sal)
Enpl oyee(ld, last, first, initial, dept), mySal ary(sal)
{
}

L ess common, however, than “normal” initializationd = i ; inthe function body:

D. Polymor phism:

Consider:

cl ass License

{
//--- Function Menbers
publ i c:

Void.Print(ostrean1& out) const;
};. /1 end of class declaration

/] Definition of Print

void License::Print(ostream & out) const

(...

/1 Definition of output operator<<
ostream & oper at or <<(ostream & out,

lic.Print(out);
return out;

}

A statement

cout << alLicense << "\n\n"
<< aHunti ngLi cense << "\ n\n"
<< aDogLi cense << endl

12345 Bus Driver

Age: 30

Birthdate: 5/6/1969

00022 Esau of |saac
Age: 100
Birthdate: 1/2/-6000

31416 Barney the D nosaur
Age: O
Birthdate: 1/1/2000

not:
12345 Bus Driver
Age: 30
Birthdate: 5/6/1969

00022 Esau of |saac
Age: 100

Birthdate: 1/2/-6000
Prey: Harts

Season: 1/1 - 12/31
Weapon: Bow & Arrow

31416 Barney the D nosaur
Age: O

Birthdate: 1/1/2000

Ki nd: Pur pl e

const License & lic)

Need dynamic or late binding : Don't bind a definition of Pri nt () toacal toPrint ()
until runtime.

Usevirtual functions:

cl ass License

{
//--- Function Menbers
publ i c:

virtual void Print(ostream & out) const;

/l--- Data Menbers
pr ot ect ed:
| ong nyNunber ;
string nyLast Nane,
nyFi r st Name;
char nyMddlelnitial;

I nt nyAge;
};")/ end of class declaration

[l Definition of Print
void License::Print(ostream & out) const

(...

/1 Definition of operator<<()
ostream & oper at or<<(ostream & out, const License & lic)

lic.Print(out);
return out;

}

Thisworks. The same function call can cause different effects at different times (or have
many forms), based on the function to which the call is bound. Such calls are described as
polymor phic (Greek for "many forms"),

Polymorphism is another advantage of inheritance in an OOP language.

Thanks to polymorphism, we can apply oper at or << to derived class objects without
explicitly overloading it for those objects!

Another example:

A base-class pointer can point to any derived class object!

So consider a declaration:

Enpl oyee * eptr;
SinceaSal ari edEnpl oyee is-an Enpl oyee, ePt r can point to aSal ari edEnpl oyee
object:

eptr = new Sal ari edEnpl oyee;
ept r can point to an Hour | yEnpl oyee object:
eptr = new Hourl yEnpl oyee;

For the call
eptr->Print(cout);
towork when ePtr pointsat a Sal ari edEnpl oyee object, the function
Sal ari edEnpl oyee: : Print () within that object must be called;
but when ePt r isapointer to an Hour | yEnpl oyee, the function
Hour | yEnpl oyee: : Print () within that object must be called.

Here is another instance where Pri nt () must be a virtual function so that this function call
can be bound to different function definitions at different times..

By preceding a base class member function with the keyword vi r t ual ,aderived class can

overload that function, so that calls to that function through a pointer or reference will be

bound (at run-time) to the appropriate definition.

Sometimes one may need apure virtual function:
vi rtual PrototypeOfFunc = O;

Then there is no definition of Func in the base class — called an abstract class — classes
drived from it must provide a definition.

E. Heterogeneous Data Structures
Consider aLi nkedLi st of Enpl oyee objects:
Li nkedLi st <Enpl oyee> L,

Each node of L will only have space for an Enpl oyee, with no space for the additional data
of an hourly or salaried employee:

L >

n empl emp2 emp_n

— 4 __|_|_|

Such alist isa homogeneous structure: Each value in the list must be of the same type
(Enpl oyee).

Now suppose we make L a Li nkedLi st of Enpl oyee pointers,
Li nkedLi st <Enpl oyee *> L;
Then each node of L can store a pointer to any object derived from class Enpl oyee:

empl emp2 emp_n

\

\

|
|
|

—1 _{_|_|

Thus, salaried and hourly employees can be intermixed in the same list, and we have a
heterogeneous storage structure.

Now consider:

Node * nPtr = L.first;
while (nPtr I'= 0)

nptr->dat a->Print (cout);
nptr = nPtr->next;

}

For the call
nPtr->dat a->Print(cout);

towork when nPt r - >dat a points at a Sal ar i edEnpl oyee object, the function
Sal ari edEnpl oyee: : Print () within that object must be called;

but when nPt r - >Dat a is a pointer to an Hour | yEnpl oyee, the function
Hour | yEnpl oyee: : Print () within that object must be called.

Here is another instance where Pri nt () must be avirtual function.

