
1

X. OOP & ADTs: An Introduction to Inheritance
(Chap. 12)

A. Inheritance, OOD, and OOP (§12.1 & 12.2)

A major objective of OOP: writing reusable code (to avoid re-inventing the wheel).

Ways we have done this:

• Write functions
• Build classes
• Store classes and functions in separately compiled libraries
• Convert functions into function templates
• Convert classes into class templates.

Most distinctive way to achieve reusability in OOP:

• Inheritance: Derive a class from another class, reusing the work done in building
one class to build another class that is just a variation.

Example: Suppose a problem requires stack operations not provided in our Stack class.

“Old-fashioned” approach: Add new member functions to this class that implement the needed
operations.

Bad: Can easily mess up a tested, operational class, creating problems for other client
programs

Object-oriented approach: Derive a new class (say, DerivedStack) from class Stack, which
is called the parent class of DerivedStack.

Good:

— Derived class inherits all of the members of its parent class (including its operations)
so need not reinvent the wheel

— Mistakes made in building DerivedStack will be local to it — original Stack class
remains untainted and client programs are not affected

2

Object-oriented design (OOD) is to engineer one’s software as follows:

1. Identify the objects in the problem;
2. Look for commonality in those objects;
3. Where there is commonality:

• Define base classes containing that commonality; and
• Derive classes that inherit the commonality from the base class.

These last two steps are the most difficult aspects of OOD.

Object-oriented programming (OOP): first used to describe the programming
environment for Smalltalk, the earliest true object-oriented programming language

Three important properties of OOP languages :

• Encapsulation
• Inheritance
• Polymorphism, with the related concept of dynamic or late binding

B. Derived Classes

Problem: Create types to model various kinds of licenses .

Critical question: What attributes do all licenses have in common?

Then store these common attributes:in a general (base) class License:

class License
{
public:

// Function members Display(), Read(), ...

private: // we'll change this in a minute
long myNumber;
string myLastName,
 myFirstName;
char myMiddleInitial;
int myAge;

 Date myBirthDay; // Date is a user-defined type
...

};

3

For the various kinds of licenses, we could include a data member of type License and then
add new members:

class DriversLicense
{
public:
 ...
private:

License common;
int myVehicleType;
string myRestrictionsCode;
...

};

class HuntingLicense
{
public:
 ...
private:

License common;
sring thePrey;
Date seasonBegin,

 seasonEnd;;
...

};

class PetLicense
{
public:
 ...
private:

License common;
string myAnimalType;
...

};

Inclusion works, but is "clunky" and inefficient.

HuntingLicense h;

h.common.Display(cout);

Worse, it's bad design! It should be that a DriversLincense is a License, not a
DriversLincense has a License.

4

Preferred approach: inheritance. Derive more specialized license classes from the base
class License, and add new members to store and operate on their specialized attributes.

Problem:
Private class members cannot be accessed within derived classes.

C++ solution:
Members declared to be protected: can be accessed within a derived class, but they
remain inaccessible to programs or non-derived classes that use the class (except for
friend functions).

So change the private section in class License to a protected section:

class License
{
public:

// Function members Display(), Read(), ...

protected:
long myNumber;
string myLastName,
 myFirstName;
char myMiddleInitial;
int myAge;

 Date myBirthDay;
...

};

Now we can derive classes for the more specialized licenses from License:

class DriversLicense : public License
{
public:
 ...
protected:

int myVehicleType;
string myRestrictionsCode;

...
};

class HuntingLicense : public License
{
public:
 ...
protected:

sring thePrey;
Date seasonBegin,

 seasonEnd;;
...

};

5

class PetLicense : public License
{
public:
 ...
private:

string myAnimalType;
...

};

Classes like DriversLicense, HuntingLicense, and BoatingLicense are said to
be derived classes (or subclasses), and the class License from which they are derived
is called a base class or parent class

We have used protected sections rather than private ones in these drived classes in case it is
necessary to derive "second-level" classes such as:

class MooseLicense : public HuntingLicense
{
public:
 ,,,
protected:

int theAntlerMaximum;
int theBullwinkleFactor;
...

};

This leads to class hierarchies — usually picture as a tree but with arrows is drawn from a
derived class to its base class:

License

Drivers
License

. . .

.

Hunting
License

Pet
License

. . .

Car
License

Unicycle
License

Moose
License

Dinosaur
License

Dog
License

Hamster
License

6

General form of declaration of a derived class:

DerivedClassName : kind_of_inheritance BaseClassName
{
 ...

// new data members and functions for derived class
 ...
}

kind_of_inheritance is usually the keyword public,
but it may be private or protected

The Fundamental Property of Derived Classes:

• Inherit the members of base class (and thus the members of all ancestor classes).

• Cannot access private members of base class

• Kind of access to public and protected members of base class depends on the
kind of inheritance specified.

public public and protected, respectively
private private
protected protected

Most common is public inheritance:

Can use public and protected members of base class in base class just as
though they were declared within the derived class itself.

It gives rise to the is-a relationship:

If

class Base : public Derived
{

// ... members of Beta ...
};

Then

 A Derived object is a Base object.

For example: A HuntingLicense is a License
A MooseLicense is a HuntingLicense
A MooseLicense is a License

7

This is in contrast to the has-a relationship (also called the inclusiong or containment
relationship or class composition). This was the situation with our first attempt at modeling
licenses. Another example is the relationship between License and Date: A License
object has a Date object, but it is not a Date oject.

Design Principle: Don't use public inheritance for the has-a relationship.

For example, it is bad design to do the following just to get the members of one class
into another:

class BusDriver : public License
{ ... }

Rather, we should use:

class BusDriver
{
 ...
 private:

 License myLicense;
...

}

A third relatioship between classes is the uses relationship: One class might simply use
another class. For example, a Fee() member function in a LicensePlate class might have
a parameter of type DriversLicense. But this class simply uses the DriversLicense
class — it is not a DriversLicense and it does not have a DriversLicense.

It's not always easy to tell which is the appopriate one to use. Two useful tests in deciding
whether to derive Y from X:

1. Do the operations in X behave properly in Y?

2. (The "need-a use-a" test): If all you need is a Y, can you use an X?

8

Summary:

The OOP approach to system design is to:

1. Carefully analyze the objects in a problem from the bottom up.

2. Where commonality exists between objects, group the common attributes
into a base class:

Object 1 Object i

Attributes
Common
to Object 1

thru Object i

. . .

Object j Object n

Attributes
Common
to Object j

thru Object n

. . .

. . .

3. Then repeat this approach “upwards” as appropriate:

Attributes
Common
to Object 1

thru Object i

Attributes
Common
to Object j

thru Object n

Attributes Common
 to Object 1 thru Object n

. . .

9

Once no more commonality exists, OO implementation then:

4. Proceeds from the top down, building the most general base class(es):

Attributes Common
 to Object 1 thru Object n

5. The less-general classes are then derived (publicly) from that base class(es):

Attributes
Common
to Object 1

thru Object i

Attributes
Common
to Object j

thru Object n

Attributes Common
 to Object 1 thru Object n

. . .

6. Derivations continue until classes for the actual objects in the system are built:

7. These classes can then be used to construct the system’s objects.

10

C. Another Example:

Suppose we are told to write a payroll program.

Following the four OOD steps, we proceed as follows:
1. Identify the objects in the problem:

• Salaried employees
• Hourly employees

2. Look for commonality in those objects: what attributes do they share?

• Id number
• Name
• Department
• ...

3. Define a base class containing the common data members:

class Employee
{
protected:

long myIdNum; // Employee's id number
string myLastName, // " last name
 myFirstName; // " first name
char myMiddleInitial; // " middle initial
int myDeptCode; // " department code

// ... other members common to all Employees

public:
// ... various Employee operations ...

};

4. From the base class, derive classes containing special attributes:

a. A salaried employee class:

class SalariedEmployee : public Employee
{
public:

// ... salaried employee operations ...

protected:
double mySalary;

};

b. An hourly employee class:
class HourlyEmployee : public Employee
{
public:

// ... hourly employee operations ...

protected:
double myWeeklyWage,

myHoursWorked,
myOverTimeFactor;

};

11

Reusability:

Suppose Employee has an output member function Print():

void Employee::Print(ostream & out) const
{

out << myIdNum << ' ' << myLastName << “, “ << myFirstName << ' '
 << myMiddleInitial << " " << myDeptCode;

}

In derived classes, we can overload Print() with new definitions that reuse the Print()
function of class Employee:

void SalariedEmployee::Print(ostream & out) const
{

Employee::Print(out); //inherited member
out << "\n$" << mySalary << endl; //local member

}

and

void HourlyEmployee::Print(ostream & out) const
{

Employee::Print(out); //inherited member
out << "\n$" << myWeeklyWage << endl //local members

 << myHoursWorked << endl << myOverTimeFactor << endl;
}

Note: A class Deriv derived from Base can call Base::F() to reuse the work of the
member function F() from the base class.

Constructors and Inheritance:
Consider Employee's constructor:

// Explicit-Value Constructor
inline Employee::Employee(long id, string last, string first,
 char initial, int dept)
{
 myIdNum = id;
 myLastName = last;
 myFirstName = first;
 myMiddleInitial = initial;
 myDeptCode = dept;
}

A derived class can use a member-initializer list to call the base-class constructor to
initialize the inherited data members — easier than writing it from scratch.

// Definition of SalariedEmployee explicit-value constructor

inline SalariedEmployee::SalariedEmployee(long id, string last, string first,
 char initial, int dept, double sal)
: Employee(id, last, first, initial, dept)
{
 mySalary = sal;
}

12

General form of Member-Initializer List Mechanism:
Derive::Derive(ParameterList) : Base(ArgList)
{

// initialize the non-inherited members in the usual manner ...
}

Initializations in a member-initializater-list are done first, before those in the body of the
constructor function.

Member-initializater list can also be used to initialize local data members in the derived
class:

Data member d of a derived class can be initialized to an initial value i using the
unusual function notation d(i) in the member-initializer list.

Example:

SalariedEmployee::SalariedEmployee(long id, string last, string first,
 char initial, int dept, double sal)
: Employee(Id, last, first, initial, dept), mySalary(sal)

 {
 }

Less common, however, than “normal” initialization d = i; in the function body:

13

D. Polymorphism:

Consider:

class License
{
//--- Function Members
public:
. . .
void Print(ostream & out) const;
. . .
}; // end of class declaration

// Definition of Print
void License::Print(ostream & out) const
{ . . . }

// Definition of output operator<<
ostream & operator<<(ostream & out, const License & lic)
{
 lic.Print(out);
 return out;
}

A statement
cout << aLicense << "\n\n"
 << aHuntingLicense << "\n\n"
 << aDogLicense << endl;
12345 Bus Driver
Age: 30
Birthdate: 5/6/1969

00022 Esau of Isaac
Age: 100
Birthdate: 1/2/-6000

31416 Barney the Dinosaur
Age: 0
Birthdate: 1/1/2000

not:
12345 Bus Driver
Age: 30
Birthdate: 5/6/1969

00022 Esau of Isaac
Age: 100
Birthdate: 1/2/-6000
Prey: Harts
Season: 1/1 - 12/31
Weapon: Bow & Arrow

31416 Barney the Dinosaur
Age: 0
Birthdate: 1/1/2000
Kind: Purple

14

Need dynamic or late binding : Don't bind a definition of Print() to a call to Print()
until runtime.

Use virtual functions:

class License
{
//--- Function Members
public:
. . .
virtual void Print(ostream & out) const;
. . .
//--- Data Members
protected:
 long myNumber;
 string myLastName,
 myFirstName;
 char myMiddleInitial;
 int myAge;
 ...
}; // end of class declaration

// Definition of Print
void License::Print(ostream & out) const
{ . . . }

// Definition of operator<<()
ostream & operator<<(ostream & out, const License & lic)
{
 lic.Print(out);
 return out;
}

This works. The same function call can cause different effects at different times (or have
many forms), based on the function to which the call is bound. Such calls are described as
polymorphic (Greek for "many forms"),

Polymorphism is another advantage of inheritance in an OOP language.

Thanks to polymorphism, we can apply operator<< to derived class objects without
explicitly overloading it for those objects!

15

Another example:

A base-class pointer can point to any derived class object!

So consider a declaration:

Employee * eptr;

Since a SalariedEmployee is-an Employee, ePtr can point to a SalariedEmployee
object:

eptr = new SalariedEmployee;

eptr can point to an HourlyEmployee object:

eptr = new HourlyEmployee;

For the call
eptr->Print(cout);

to work when ePtr points at a SalariedEmployee object, the function

SalariedEmployee::Print() within that object must be called;

but when ePtr is a pointer to an HourlyEmployee, the function

HourlyEmployee::Print() within that object must be called.

Here is another instance where Print() must be a virtual function so that this function call
can be bound to different function definitions at different times..

 By preceding a base class member function with the keyword virtual,a derived class can
overload that function, so that calls to that function through a pointer or reference will be
bound (at run-time) to the appropriate definition.

Sometimes one may need a pure virtual function:

virtual PrototypeOfFunc = 0;

Then there is no definition of Func in the base class — called an abstract class — classes
drived from it must provide a definition.

16

E. Heterogeneous Data Structures

Consider a LinkedList of Employee objects:

LinkedList<Employee> L;

Each node of L will only have space for an Employee, with no space for the additional data
of an hourly or salaried employee:

. . .

n

L

emp1 emp2 emp_n

Such a list is a homogeneous structure: Each value in the list must be of the same type
(Employee).

Now suppose we make L a LinkedList of Employee pointers,

LinkedList<Employee *> L;

Then each node of L can store a pointer to any object derived from class Employee:

. . .

n

L
emp1 emp2 emp_n

Thus, salaried and hourly employees can be intermixed in the same list, and we have a
heterogeneous storage structure.

Now consider:

Node * nPtr = L.first;

while (nPtr != 0)
{

nptr->data->Print(cout);
nptr = nPtr->next;

}

17

For the call
nPtr->data->Print(cout);

to work when nPtr->data points at a SalariedEmployee object, the function

SalariedEmployee::Print() within that object must be called;

but when nPtr->Data is a pointer to an HourlyEmployee, the function

HourlyEmployee::Print() within that object must be called.

Here is another instance where Print() must be a virtual function.

