
1-1

I. Software Development (Chap. 1 — read)
 5 phases of software life cycle

A. Problem Analysis and Specification (§1.1)
— Easy in courses, not always in real world

CPSC 185 - Assignment 4 To: Bob Byte, Director of Computer Center

Due : Wednesday, March 11 From: Chuck Cash, V.P. of Scholarships
and Financial Aid

One method of calculating depreciation is the
sum-of-the-years digits method. It is illustrated
by the following example.

Date: Wednesday, March 11

Suppose that $15,000 is to be depreciated
over a five-year period. We first calculate the
“sum-of-the-years digits,” 1 + 2 + 3 + 4 + 5 =
15. Then 5/15 of $15,000 ($5,000) is
depreciated the first year, 4/15 of $15,000
($4,000) is depreciated the second year, 3/15
the third year, and so on.

Because of new government regula-tions,we
must keep more accurate records of all
students currently receiv-ing financial aid and
submit regular reports to FFAO (Federal
Financial Aid Office). Could we get the
computer to do this for us?

Write a program that reads the amount to be
depreciated and the number of years over
which it is to be depreciated. Then for each
year from 1 through the specified number of
years, print the year number and the amount of
depreciation for that year under appropriate
headings. Execute the program with the
following data: $15,000 for 3 years; $7,000 for
10 years; $500 for 20 years; $100 for 1year.

CC

— Statement of specifications becomes:
→ the formal statement of the problem’s requirements
→ the major reference document
→ a benchmark used to evaluate the final system

The program should display on the screen a prompt for an
amount to be depreciated and the number of years over which it
is to be depreciated. It should then read these two values from
the keyboard. Once it has the amount and the number of years, it
should compute the sum of the integers from 1, 2, . . . , up to the
number of years. It should then display on the screen a table
with appropriate headings that shows the year number and the
depreciation for that year, for the specified number of years.

Sometimes stated precisely using a formal method

1-2

B. Design (§1.2)
Programs, libraries, classes:

 In CS courses In the real world
 small — ≤ a few hundred large systems — thousands of

 lines of code lines of code
 simple, straightforward complex

 Object-centered design:

1. Identify the objects in the problem's specification and their types.

2. Identify the operations needed to solve the problem.

3. Arrange the operations in a sequence of steps, called an algorithm,
which, when applied to the objects, will solve the problem.

Data types:
• Simple
• Structured — data structures

Algorithms
• Different ones may work, but may not be equally efficient (pp. 7-8)

O(n) — grows linearly with size (n) of the input
O(1) — is constant — independent of size of input

More later about measuring efficiency
• Can't separate data structures and algorithms

Algorithms + Data Structures = Programs
• Properties of instructions (p. 9)

— Definite and unambiguous
— Simple
— Finiteness

• Usually written in pseudocode
• Can be unstructured
 Should be structured (pp. 10-12)

1-3

 ALGORITHM (UNSTRUCTURED VERSION)
/* Algorithm to read and count several triples of distinct numbers

and print the largest number in each triple. */

1. Initialize count to 0.
2. Read a triple x, y, z.
3. If x is the end-of-data flag then go to step 14.
4. Increment count by 1.
5. If x > y then go to step 9.
6. If y > z then go to step 12.
7. Display z.
8. Go to step 2.
9. If x < z then go to step 7.
10. Display x.
11. Go to step 2.
12. Display y.
13. Go to step 2.
14. Display count.

Note the spaghetti logic!

ALGORITHM (STRUCTURED VERSION)

/* Algorithm to read and count several triples of distinct numbers
and print the largest number in each triple. */

1. Initialize count to 0.
2. Read the first triple of numbers x, y, z.
3. While x is not the end-of-data-flag do the following:

a. Increment count by 1.
b. If x > y and x > z then

Display x.
 Else if y > x and y > z then

Display y.
 Else

Display z.
c. Read the next triple x, y, z.

4. Display count.

1-4

1-5

C. Coding (§1.3): Implementing the design plan in some programming
language.

 Integration: Combining program units into a complete
software system.

— What language?
— Programs must be correct, readable, and understandable

 (therefore, must be well-structured, documented,
written in good style — read guidelines on pp. 15-18)

Why? see page 15

D. Testing, Execution, and Debugging

Validation: checking that the documents, program modules, etc.
produced match the customer's requirements.

Verification: checking that products are correct, complete, consistent with
each other and with those of the preceding phases.

Validation: "Are we building the right product?"
Verification: "Are we building the product right?"

1. Errors may occur in any of the phases:
— Specifications don't accurately reflect given information or the

user's needs/requests
— Logic errors in algorithms
— Incorrect coding or integration

2. Different kinds of tests required to detect them:
Unit tests: Each individual program unit works?
Integration tests: Units combined correctly?
System tests: Overall system works correctly?

1-6

The "V" Life Cycle Model.

Unit testing:
— probably the most rigourous and time-consuming
— surely the most fundamental and important

3. Kinds of errors
— syntax
— linking
— run-time
— logical

4. Kinds of tests:
— Black box or functional test : Outputs produced for various inputs

are checked for correctness without considering the structure of the
module itself. (Program unit is viewed as a black box that accepts
inputs and produces outputs, but the inner workings of the box are not
visible.)

—White box or structural test: Performance is tested by examining
its internal structure. Test data is carefully selected so that the various
parts of the program unit are exercised.

1-7

5. Example: Binary search (pp. 19-23)

 /* INCORRECT FUNCTION ----------------------------------
-
 BinarySearch() performs a binary search of a for item.

 Receive: item and an array a having n items, arranged
 in ascending order
 Pass back: found and mid, where found is true
and
 mid is the position of item if the
search
 is successful; otherwise found is
false.

--*/

void BinarySearch(NumberArray a, int n, ElementType item,
 bool & found, int & mid)
{
 int first = 0, // first and last positions in sublist
 last = n - 1; // currently being searched *)
 found = false;
 while (first <= last && !found)
 {
 mid = (first + last) / 2;
 if item < a[mid]
 last = mid;
 else if item > a[mid]
 first = mid;
 else
 found = true
 }
}

Black box test: Use n = 7 and array a of integers:
a[0] = 45
a[1] = 64
a[2] = 68
a[3] = 77
a[4] = 84
a[5] = 90
a[6] = 96

Test with item = 77 returns found = true, mid = 4
Test with item = 90 returns found = true, mid = 6
Test with item = 64 returns found = true, mid = 2
Test with item = 76 returns found = false

But, . . ., must consider special cases:
e.g., searching at the ends of the list: item ≤ 45, item ≥ 96

item = 45: found = true and mid = 1 as it should.
item = 96: doesn’t terminate; must “break” program.

 White-box test would also find an error:

1-8

e.g., Use item < 45 to test a path in which the first condition item <
a[mid]

is always true so first alternative last = mid; is always
selected.
 Use item > 96 to test a path in which the second condition item >
a[mid]

is always true so second alternative first = mid; is always
selected.

6. Techniques to locate error:
— Debugger (Project 1)

— Debug statements (p. 21): e.g.,
cerr << "DEBUG: At top of while loop in BinarySearch()\n"
 << "first = " << first << ", last = " << last
 << ", mid = " << mid << endl;

Output:
DEBUG: At top of while loop in BinarySearch()
first = 0, last = 6, mid = 3
DEBUG: At top of while loop in BinarySearch()
first = 3, last = 6, mid = 4
DEBUG: At top of while loop in BinarySearch()
first = 4, last = 6, mid = 5
DEBUG: At top of while loop in BinarySearch()
first = 5, last = 6, mid = 5
DEBUG: At top of while loop in BinarySearch()
first = 5, last = 6, mid = 5
DEBUG: At top of while loop in BinarySearch()
first = 5, last = 6, mid = 5

...

— Trace tables (p. 22 & Lab 1A)

— Quick-and-dirty patches are bad! (p. 23)

E. Maintenance — pp. 23-24

— Large % of computer center budgets
— Large % of programmer's time

Why? Poor structure, poor documentation, poor style.

