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IX.  Binary Trees (Chapter 10)

A. Introduction:  Searching a linked list.

1.  Linear Search

/* To linear search a list for a particular Item */
1.  Set Loc = 0;
2.  Repeat the following:

a.  If Loc >= length of list
 Return –1 to indicate Item not found.

b.  If list element at location Loc is Item
Return Loc as location of Item

c.  Increment Loc by 1.

Linear search can be used for lists stored in an array as well as for linked lists.  (It's the method used in the find

algorithm in STL.)  For a list of length n, its average search time will be _______________.

2.  Binary Search

If a list is ordered, it can be searched more efficiently using binary search:

/* To binary search an ordered list for a particular Item */

1. Set First = 0 and Last = Length of List – 1.
2.  Repeat the following:

a.  If First > Last
Return –1 to indicate Item not found.

b. Find the middle element in the sublist from locations First through Last
 and its location Loc.

c. If Item < the list element at Loc
Set Last = Loc – 1.  // Search first half of list

   Else if Item > the list element at Loc
Set First = Loc + 1.  // Search last half of list

   Else
Return Loc as location of Item

     End Loop

Since the size of the list being searched is reduced by approximately 1/2 on each pass through the loop, the number of

times the loop will be executed is  __________________ .

It would seem therefore that binary search is much more efficient than linear search.  This is true for lists stored in
arrays in which step 2b can be done simply by calculating Loc = (First + Last) / 2 and Array[Loc] is the middle list
element.
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For linked lists, however, binary search is not practical, because we only have direct access to the first node, and
locating any other node requires traversing the list until that node is located.  Thus step 2b  requires:

  i.  Mid = (First + Last) / 2
 ii.  Set LocPtr = First;
iii.  For Loc = First to Mid - 1

Set LocPtr = Next part of node pointed to by LocPtr.
 iv.  Loc is the location of the middle node and the Data part of the node

pointed to LocPtr is the middle list element.

The traversal required in step iii to locate the middle node clearly negates the efficiency of binary search for array-based
lists; the computing time becomes O(n) instead of O(log2n).

However, perhaps we could modify the linked structure to make a binary search feasible.  What would we need?
Direct access to the middle node:

22      33      44      55      66      77      88

and from it to the middle of the first half and to the middle of the second half, and so on:

22      33      44      55      66      77      88

and so on:

22      33      44      55      66      77      88

Or if stretch out the links to give it a ___________-like shape:

That is, use a                                                                  
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B. Binary Search Trees

1. Definition and Terminology:
A tree consists of a finite set of elements called nodes (or vertices) and a finite set of directed arcs that connect
pairs of nodes.  If the tree is not empty, then one of the nodes, called the root, has no incoming arcs, but every other
node in the tree can be reached from the root by a unique path (a sequence of consecutive arcs).

A leaf  is a node with no outgoing arcs.

Nodes directly accessible (using one arc) from a node are called the children of that node, which is called the parent of
these children; these nodes are sibl ings  of each other.

                        of this
                        of each other

2. Examples
Game trees
Parse trees
Morse code trees

    

3. Def: A binary tree is a tree in which                                                                                                                                    
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4. Array-Based Implementation:
An array can be used to store some binary trees.  In this scheme, we just number the nodes level by level, from left to
right,

and store node #0 in array location 0, node #1 in array location 1, and so on:

i . . .

T [i ] . . .

However, unless each level of the tree is full so there are no "dangling limbs," there can be much wasted space in the
array.  For example,

contains the same characters as before but requires 58 array positions for storage:

i 0 1 2 ... ... ... ...

T [i ] E C M ... U ... T ... P ... O

5. Linked Implementation:
Use nodes of the form

and maintain a pointer to the root.
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   Example:

 

75

60

58

80

65 92

root

b. C++ Implementation:

template <typename BinTreeElement>

class BinaryTree
{
 public:
  // ... BinaryTree function members

 private:
  class BinNode                 // a binary tree node
  {
  public:

// ... Node member functions
   };

  typedef BinNode * BinNodePointer;  // an easy-to-read alias type

  // BinaryTree data members

  BinNodePointer root;              // pointer to the root node

};
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5. Def.  A Binary Search Tree (BST) is a binary tree in which the value in each node is                                                    

                                                                                                                                                                                                            

a. We can "binary search" a BST:

1.  Set pointer locPtr  = root.

2.  Repeat the following:
If locPtr is null

_______________________________

If value <  locPtr ->data

_______________________________

Else if value > locPtr ->data

_______________________________

Else

_______________________________

Search time:  ____________________________________________________

b. What about traversing a binary tree?

This is most easily done recursively, viewing a binary tree as a recursive data structure:

Recursive definition of a binary tree:
A binary tree either:

  i.  is empty  ←  Anchor
or
ii. consists of a node called the root, which has \

     pointers to two disjoint binary subtrees  | ← Inductive step
     called the left subtree and the right subtree. /

Now, for traverssal, consider the three operations:

V:  Visit a node.

L:  (Recursively) traverse the left subtree of a node.

R:  (Recursively) traverse the right subtree of a node.

We can do these in six different orders:  LVR,  VLR,  LRV,  VRL,  RVL,  and RLV

For example, LVR gives the following traversal algorithm:  As a member function in a BinaryTree class:

If the binary tree is empty then // anchor
Do nothing.

Else do the following: // inductive step
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Rearranging the steps L, V, and R gives the other traversals.

Example:

LVR:

VLR:

LRV:

The first three orders, in which the left subtree is traversed before the right, are the most important of the six traversals
and are commonly called by other names:

LVR ↔                                   

VLR ↔                                   

LRV ↔                                     

Note:  Inorder traversal of a BST visits the nodes                                                                                                .

To see why these names are appropriate, recall expression trees, binary trees used to represent the arithmetic
expressions like A  – B  * C  + D:

Inorder  traversal → infix  expression: _______________________________

Preorder  traversal → prefix  expression:  ____________________________

Postorder  traversal → postfix  expression: ___________________________

c.  So how do we insert in a binary tree so it grows into a BST?

Modify the search algorithm so that a pointer parentPtr trails locPtr down the tree, keeping track of the parent of each
node being checked:

1.  Initialize pointers locPtr  = root, parentPtr = NULL.
2.  While locPtr ≠ NULL:

a.  parentPtr = locPtr
b.  If value <  locPtr->Data

locPtr = locPtr->Left
     Else if value > locPtr->Data

locPtr = locPtr->Right
Else

value  is already in the tree; return a found indicator.
3. Get a new node pointed to by newPtr, put the value in its data part,

and set left and right to null.
4.  if parentPtr = NULL // empty tree

Set root = newptr.
Else if value < parentPtr->data

Set parentPtr->left = newPtr.
Else

Set parentPtr->right = newPtr.
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Examples:

Insert in the order given:    Insert in the order given: Insert in the order given:
M, O, T, H, E, R T, H, E, R, M, O E, H, M, O, R, T

d.  What about deleting a node a BST?
Case 1:   A leaf,  and Case 2:  1 child Easy — just reset link from parent

Case 3:   2 children:  1. Replace node with inorder successor X.
2. Delete X (which has 0 or 1 child)

Some Special Kinds of Trees:
AVL Trees
Threaded Binary Search Trees
Tries
B-Trees
Huffman Code Trees   (data compression)


