VIII. Pointers-RunTime Arrays-LinkedLists

VIII. Run-Time Arrays—Intro. to Pointers (88.4 & 8.5)
A. Introduction to Pointers

For declarations like

doubl e doubl eVar;
char charvar = "'A';
int intVar = 1234;

the compiler the object being declared (i nt Var , doubl eVar , and char Var), which means that it:

1

2.

3.

For example:

0x1220 <— i ntVar
0x1221

0x1222

0x1223

I 0x1224 <— char Vvar
0x1225 <— doubl eVar
0x1226

0x1227

0x1228

0x1229

0x122a

0x122b

0x122c

1. The Address-of Operator (&)

We have seen (Lab 1) that avariable's address can be determined by using the address-of operator (&):

is the address of variable

Example: For the scenario described above:
Values of & nt Var , &cr_lar Var, and &d_oubl eVar

0x1220, 0x1224, and 0x1225

2. Pointer Variables

a. To make addresses more useful, C++ providespointer variables.

Definition: A pointer variable (or simply pointer) is avariable whose valueis

b. Declarations:

pointerVariable

declaresavariable named pointerVariable that can store

VIII. Pointers-RunTime Arrays-LinkedLists

Example

#i ncl ude <i ostreanp
usi ng namespace std;

int main()
int i =11, j = 22;
double d = 3.3, e = 4.4,
/1 pointer variables that:
) store)
) store)
; /1 value of iptr is
; /1 value of jptr is
dptr = &d; /1 value of dptr is address of d
eptr = &e; /1 value of eptr is address of e
cout << "& =" << (void*)iptr << endl
<< "& =" << (void¥)jptr << endl
<< "&d = " << (void*)dptr << endl
<< "&e = " << (void*)eptr << endl;
return O;
}
Output produced:

& = Ox7fffb7f4

& = Ox7fffb7f0
&1 = Ox7fffb7e8
&e = Ox7fffb7e0

3. Dereferencing Operator

We have a so seen that the dereferencing (or indirection) operator * can be used to access a value stored in alocation. Thus
for an expression of the form

the value produced isnot stored in pointerVariable, but isinstead the

Example
Vaueofdptr: Ox7fffb7e8

Val ue of *dptr:

dptr[ox7fffb7e8 d| |Ox7fffb7e8

Wesay dpt r that memory location (whose address is Ox7fffb7e8).
Suppose we replace the preceding output statements by: Output produced will be:
cout << "j " << *iptr << endl

<< "j
<< "d

<< *jptr << endl
" << *dptr << endl

VIII. Pointers-RunTime Arrays-LinkedLists

<< "e =" << *eptr << endl;

4. A Note about Reference Parameters

Recall the C++ function to exchange the values of two i nt variables:
void Swap(int & A, int & B)

int Tenp = A, A= B;, B = Tenp;
}

Thevaues of two i nt variablesx andy can be exchanged with the call:
Swap(x, y);

Thefirst C++ compilers were just preprocessors that read a C++ program, produced functionally equivalent C code, and ran
it through the C compiler. But C has no reference parameters. How were they handled?

Trand ate the function to
void Swap(int * A int * B)

int Tenp = *A;, *A = *B; *B = Tenp;

}
and the preceding call to
Swap(&x, &y);

Thisindicates how the call-by-reference parameter mechanism works:

® A reference parameter is avariable containing the

(i.e,a) and that is automatically when used.

6. Anonymous Variables

a Definition: A variable isa

A has a name associated with its memory location,
so that this memory location can be accessed conveniently.

An has no name associated with its memory location,

but if the of that memory location isstored in a , then

the variable can be

b. Named variables are created using a normal variable declaration. For example, in the preceding example, the

declaretion
int j = 22;

i. constructed an integer (4-byte) variable at memory address Ox7fffb7f4 and initialized those 4 bytes to the value 22;
and

ii. associated the name with that address, so that all subsequent usesof j referto address Ox7fffb7f4; the statement
cout << j << endl;

will display the 4-byte value (22) at address Ox7fffb7f4.

VIII. Pointers-RunTime Arrays-LinkedLists

¢. Anonymous variables are created using thenew operator, whose formiis:

When executed, this expression:

Example:

#i ncl ude <i ostreane
usi ng nanmespace std;

int main()
doubl e * dptr,

* eptr;
Sample run:

Enter two nunbers: 2.2 3.3

cout << "Enter two nunbers: ";
cin >> *dptr >> *eptr;

cout << *dptr << " o+ " << *reptr
<< " = " «< *dptr + *eptr << endl,

The program uses the new operator to allocate two anonymous variabl es whose addresses are stored in pointer
variablesdpt r andeptr:
double * dptr, * eptr;

dptr
eptr

new doubl e;
new doubl e;

Note 1: We could have performed these allocations as initializations in the declarations of dpt r andeptr:

doubl e * dptr
* eptr

new doubl e,
new doubl e;

Note 2: newmust be used each time amemory allocation is needed. For example, in the assignment
dptr = eptr = new doubl e;

eptr = new doubl e alocates memory for adouble value and assignsits addressto ept r,
but dptr = eptr simply assignsthis same addressto dpt r (and does not allocate new memory.)

The program then inputs two numbers, storing them in these anonymous variables by dereferencing dpt r andept r
in an input statement:

cout << "Enter two nunbers: ;
cin >> *dptr >> *eptr;

VIII. Pointers-RunTime Arrays-LinkedLists

It then outputs the two numbers and their sum:

cout << *dptr << " + " << *eptr
<< " = " << *dptr + *eptr << endl;

by dereferencing the pointer variables.

Theexpression*dpt r + *ept r computes the sum of these anonymous variables. If we had wished to store this
sum in athird anonymous variable, we could have written:

double * fptr = new doubl e;
*fptr = *dptr + *eptr;

cout << *fptr << endl;

Note: It isan error to attempt to allocate the wrong type of memory block to a pointer variable; for example,

doubl e dptr = new int; [l error
produces a compiler error.

7. Memory Allocation/Deall ocation

Run-Time
new receives its memory allocation from a pool of available memory Stack l
(called the heap or free store). It isusually located between a program and its run-
time stack: The run-time stack grows each time afunctioniscalled, soitis
possible for it to overun the heap (if mai n() callsafunction that calls afunction
that callsafunction ...) Itisalso possible for the heap to overun the run-time Heap T
stack (if aprogram performslots of new operations). —_—
Program
statements
If a program executes a new operation and the heap has been exhausted, then
(caled the or).

It iscommon to picture aNULL pointer variable using the electrical engineering ground symbol:

Itisalways agood ideato check whether a pointer variable hasa NULL value before attempting to dereference it because

an attempt to dereference a NULL (or uninitialized or void) pointer variable produces a

doubl e *dptr = new doubl ¢;

if ()
{

cerr << "\n*** No nore nmenory!\n";
exit(-1);

When many such checks must be made, an assertion is probably more convenient:

X-6 VIII. Pointers-RunTime Arrays-LinkedLists

The RTS grows each time afunction is called, but it shrinks again when that function terminates. What is needed is an
anal ogous method to reclaim memory alocated by new, to shrink the heap when an anonymous variable is no longer needed.

Otherwise a results.

For this, C++ provides the delete operation: del ete pointerVariable
which the block of memory whose addressis stored inpoi nt er Var i abl e, when itisno
longer needed.

B. Run-Time-Allocated Arrays (815.2)

Container classeslike St ack and Queue that use arrays (as we know them) to store the elements have one obvious
deficiency:

Thisis because arrays as we have used them up to now have their capacities fixed at compiletime. For example, the
declaration

doubl e a[50];
declares an array with exactly 50 elements.

Thiskind of array is adequate if afixed-capacity array can be used to store al of the data sets being processed. However, this
often is not true because the sizes of the data sets vary. In this case we must either:

— Make the array's capacity large enough to handle the biggest data set — an
obvious waste of memory for smaller data sets.

— Change the capacity in the array's declaration in the source progranmvlibrary and
recompile.

It would be niceif the user could specify the capacity of the array/stack/queue at run time and an array of that capacity would
then be allocated and used. Thisis possiblein C++.

1. Allocating an Array During Run-Time

The operator n e w can be used in an expression of the form

whereN isan integer expression, to alocate an ;

it returns the

0 1 2 3 4 .o N1
Ot L1 1 1 1 | |
This allocation occurs when this expression is , that is, at

This means that the user can input a capacity, and the program can allocate an array with exactly that many elements!

The address returned by new must be assigned it to a pointer of type Type. Thus adeclaration of arun-time-allocated
array issimply a pointer declaration:

VIII. Pointers-RunTime Arrays-LinkedLists

Example

int numtens;

doubl e dub[20] ; /1 an ordinary conpile-tine array

; /1l a pointer to a (run-time) array

cout << "How many nunbers do you have to process? "
cin >> numtens,;

Note Recall that for an ordinary array likedub, the value of the array name dub is the base address of the array. So, ina
subscript expression like

dub[i] (sameasoperator[] (dub, i))
the subscript operator actually takes two operands: the base address of the array and an integer index. Since the
pointer variabledubPt r also isthe base address of an array, is can be used in the same manner as an array name:

(sameasoperator[] (dubPtr, i))

Example
for (int i =0; i < nunmtens; i++)

cout << << endl ;

. Dedllocating a Run-Time Array

We can use thedelete operation in a statement of the form

del ete[] arrayPtr;

This returns the storage of the array pointed to by arrayPtr to the heap. Thisisimportant because

asin:
for(;:)
t
int n;
cout << "Size of array (0 to stop):
cin >> n;

if (n == 0) break;

double * arrayPtr = new doubl e[n];
/'l process arrayPtr

}

Each new allocation of memory to ar r ay Pt r maroons the old memory block.

X-8 VIII. Pointers-RunTime Arrays-LinkedLists

D. Run-Time-Allocation in Classes

Classes that use run-time allocated storage requirse some new members and modifications of others:

1 : To "tear down" the storage structure and deallocate its memory.
2. : To make a copies of objects (e.g., value parameters)
3. . To assign one storage structure to another

We will illustrate these using our St ack class.

1. Data Members

We will use arun-time allocated array so that the user can specify the capacity of the stack during run time. We simply
change the declaration of the ny Ar r ay member to apointer and STACK CAPACI TY to avariable; to avoid confusion,
we will use different names for the data members.

//***** R‘I'Stackh *kk k%
[* -- Docunentation as earlier (: Saving space :) --*

#i f ndef RTSTACK
#def i ne RTSTACK

#i ncl ude <i ostreane
usi ng nanespace std;

tenpl ate <cl ass St ackEl enent >

cl ass Stack

{
private:
/1 run-time allocated array to store el enents
i nt

myCapacity_, /1 capacity of Stack
myTop_; /1 top of stack

[***** NMenber Functions *****/

public:

s

#endi f

2. The Class Constructor

We want to allow declarations such as
Stack<int> sl1, s2(n);

to construct s1 as a stack with some default capacity,
and construct s2 as a stack with capacity n.

To permit both forms, we declare a constructor with a default argument:

/* --- Class constructor ---
Precondition: A stack has been defi ned.
Recei ve: I nt eger nunkEl ements > 0; (default = 128)

Post condi ti on: The stack has been constructed as a stack with
capaci ty nunEl ements.

VIII. Pointers-RunTime Arrays-LinkedLists X-9

This constructor must really construct something (and not just initialize data members):

#i ncl ude <cassert> /1 provides assert()
#i ncl ude <cstdlib> /'l provides exit()
usi ng namespace std;

//*** Definition of class constructor
tenpl ate <cl ass St ackEl enent >
St ack<St ackEl enent >: : Stack(int nunEl enents)

{
assert (nunkEl enents > 0); /1 check precondition
myCapacity_ = nunkl enents; /1 set stack capacity
/1 allocate array of this capacity
if () I/ check if nmenory avail able
{
cerr << "*** | pnadequate nmenory to allocate stack ***\n";
exit(-1);
/1 or assert(nyArrayPtr != 0);
myTop_ = -1;
}

Now a program can include our RTSt ack header file and declare

cin >> num
St ack<doubl e> s1, s2(nunj;

s1 will be constructed as a stack with capacity 128 and s 2 will be constructed as a stack with capacity num

3. Other stack operations: empty, push, top, pop, output

The prototypes and definitions of enpt y (') as well as the prototypes of push(), top(), pop(),and
oper at or <<() arethe same as before (except for some name changes). See pages 428-31

The definitions of push(), t op(), pop(), and oper at or <<() require accessing the elements of the array data
member. Aswe have noted, the subscript operator [] can be used in the same manner for run-time allocated arrays as for
ordinary arrays, and thus (except for name changes), the definitions of these functions are the same as before; for example:

[1*** Definition of push()
tenpl ate <cl ass St ackEl enent >
voi d St ack<St ackEl enent >; : push(const StackEl enent & val ue)

{
if (nyTop_ < nyCapacity_ - 1)
{

++n'yTop_;
} [l or sinply, nyArrayPtr[++nyTop_] = val ue;
el se

cerr << "*** Gtack is full -- can't add new val ue ***\n";

X-10 VIII. Pointers-RunTime Arrays-LinkedLists

4, Class Destructor

For any class object obj we have used up to now, when obj isdeclared, the class constructor is called to initializeobj .
When the lifetime of obj isover, its storageis reclaimed automatically because the location of the memory allocated is
determined at compile-time.

For objects created during run-time, however, anew problem arises. Toiillustrate, consider a declaration
St ack<doubl e> st (nunj;

The compiler knows the datamembersnyCapacity_, myTop_,and nyArrayPt r of st soit can allocate memory for

them:
st my Capaci ty_|:|
myTop_[_]

rryArrayPtr|:|

Array to store stack elementsis created by the constructor; so memory for it isn't allocated until run-time:

st nyCapacity_[|

nyTop_[] 01 23 4 num 1
nyArrayPtr [—H—s[T [[1]]

When the lifetime of st ends, the memory allocated tonyCapaci ty_, myTop_, and myAr r ayPt r isautomatically
reclaimed, but not for the run-time allocated array:

01 23 4 num 1
I I I [|
Wemust add a to the class to avoid avoid this memory leak.
« Destructor'srole: (opposite of constructor'srole).

« At any point in a program where an object goes out of scope, the compiler

That is:

Form of destructor:

< Nameisthe

e [thasno

~Cl assName() \

VIII. Pointers-RunTime Arrays-LinkedLists

For our St ack class, we use the operation to deall ocate the run-time array.

//***** R‘I’Stackh * % % % %
/* --- Class destructor ---

Precondition: The lifetine of the Stack containing this
function should end.

Postcondition: The run-time array in the Stack containing
this function has been deal | ocat ed.

/1 Follow ng class declaration
/1 Definition of destructor
tenpl ate <cl ass St ackEl enent >

Suppose st is

st

nyCapacity [5]
myTop_[2] 012 3 4
nyArrayPtr [—H—s[@lbl cl T]

When st 'slifetimeisover, st . ~St ack() will be called first, which produces

st

nyCapacity [5]
myTop_[2]

nyArrayPtr E.q

Memory allocated tost — myCapacity_, nyTop_, and nyAr r ayPt r — will then be reclaimed in the usual
manner.

5. Copy constructor

Is needed whenever
which occurs:

When aclass object is passed as a

When a aclass object

- If of aclass object is heeded

e In

X-11

X-12

VIII. Pointers-RunTime Arrays-LinkedLists

Defining the copy constructor:

If aclass has no copy constructor, the compiler uses a that doesa

. This has been adequate for classes up to now, but not for

a class containing pointersto run-time allocated arrays (or other structures).
For example, a byte-by-byte copying of st to produce acopy st Copy gives
st nyCapaci t y_l__5_|

nyTop_[2] 0 1.2 3 4
nyArrayPtr [FH—={albl cl T]

St QopY [y capacity [|
nyTop_[]

rryArrayPtrlZl

Thisis not correct, since copies of myCapaci ty_, myTop_, and nyAr r ayPt r have been made, but not a copy of the
run-time alocated array. Modifying st Copy will modify st also!

What is needed isto create adistinct copy of st , in which the array in st Copy has exactly the same elements as
thearray in st :

st -
nmyCapaci ty

myTop_[2] 0 1 2 3 4
nyArrayPtr [H—s[albl cl T]

st Gopy |nyCapacity_[]
myTop_[_]

nyArrayPtr []

The copy constructor must be designed to do this.

Form of copy constructor:

= |t isaconstructor so it must be a function member, its name is the class name, and it has no return type.
e Itneedsa ; thismust be a

and should be since it does not change this parameter or pass information back through it.

(Otherwise it would be a value parameter, and since a value parameter is a copy of its argument, a call to the copy
instructor will try and copy its argument, which calls the copy constructor, which will try and copy its argument,
which calls the copy constructor . . .)

[1%%%%% RTStack.h ***x

[* --- Copy constructor ---

Precondition: A copy of a stack is needed.
Recei ve: Stack original, the object to be copied
Post condition: A copy of original has been constructed.

VIII. Pointers-RunTime Arrays-LinkedLists X-13

/1 end of class declaration
/1 Definition of copy constructor

tenpl ate <cl ass St ackEl enent >
St ack<St ackEl enent >: : St ack(const Stack<StackEl enent> & original)

{

nmyCapacity = original.nyCapacity_; /1 copy nyCapacity_ menber
nyArrayPtr = ; /1 allocate array in copy
if () /1 check if nenmory avail able
{
cerr << "*** |nadequate nmenory to allocate stack ***\n";
exit(-1);
/1 copy array nenber
/1 copy nyTop_ memnber
}
6. Assignment

Assignment is another operation that requires special attention for classes containing pointers to run-time arrays (or other
structures). Like the copy constructor, there is a default predefined assignment operation that does byte-by-byte copying.
But for the same reason as given earlier, an assignment statement

s2Copy = s2;

would produce the same situation pictured earlier; the Ar r ay Pt r data members of both s2 and s2Copy would both
point to the same anonymous array.

Again, what is needed isto overload the assignment operator (oper at or =) so that it creates a distinct copy of the stack
being assigned.
Recall that oper at or = must be a member function. Thus, an assignment
stLeft = stRight;
will be trandated by the compiler as
stLeft.operator=(stRight);

An appropriate prototypeis:
/* --- Assignment operator for Stacks ---

Receive: Stack stRight (the right side of the assignnent operator)
obj ect containing this nmenber function
Return (inplicit paraneter): The Stack containing this
function which will be a copy of stRight
Return (function): A reference to the Stack containing
this function

A constant reference parameter is used because the function receivesthe St ack on the right side of the assignment and
doesn't pass anything back through it. Thereturn typeisareferenceto a St ack since oper at or =() must return the

X-14 VIII. Pointers-RunTime Arrays-LinkedLists

object on the left side of the assignment and not a copy of it (to make chaining possible).

Definition of Assignment Operator

The definition of oper at or =() isquite similar to that for the copy constructor, but there are some differences:

1. The St ack on the left side of the assignment may aready have avalue. Must destroy it —deallocate the old so

and allocate anew one

2. Assignment must be concerned with

Can't destroy the right old value in this case.

3. oper at or =() must return the St ack containing this function.
For this we use the following property of classes:

Every member function of a class has access to a (hidden) named constant named

whose value isthe . Theexpression

refersto itself.

We can now write the definition of oper at or =() :
[/*** Definition of operator=

tenpl ate <cl ass St ackEl enent >
St ack<St ackEl ement > &

St ack<St ackEl enent >: : oper at or =(const St ack<St ackEl enent> & ori gi nal)

{
if () /] check that not st = st
{

; /1 destroy previous array
myArrayPtr = new StackEl ement[nyCapacity_]; // allocate array in copy
if (myArrayPtr == 0) /1 check if menmory avail abl e
{

cout << "*** | pnadequate nmenory to allocate stack ***\n";
exit(-1);
}
myCapacity_ = original.nyCapacity_; /1 copy nyCapacity_ menber
for (int pos = 0; pos < nyCapacity ; pos++) // copy array nenber
nmyArrayPtr[pos] = original.mArrayPtr[pos];
nmyTop_ = original.nyTop_ ; /1 copy nyTop_ menber
}
return ; /1 return reference to

} /1 thi s object

VIII. Pointers-RunTime Arrays-LinkedLists X-15

//***** Test D-Iver EEEEEEEEE SRR EEEEEEEEEEE RS

#i ncl ude <i ostreanr
usi ng namespace std,;
#i ncl ude "RTSt ack. h"

Print (Stack<int> st)
{

cout << st;

}
int main()

int Sze;

cout << "Enter stack size: ";

cin > Size;

St ack<i nt > §(Si ze);

for (int i =1; i <=5; i++)
S. Push(i);

Stack<int> T = S

cout << T << endl ;

Sample Runs:
Enter stack capacity: 5

Enter stack capacity: 3

*** Stack is full -- can't add new val ue ***
x Stack is full -- can't add new val ue *
3
2
1

Enter stack capacity: O
StackRT. cc: 12: failed assertion ~NunEl enents > 0
Abor t

Test driver with statements in the constructor, copy constructor, and destructor to trace when they are called.

See Figure 8.7 on pp. 440-2

X-16 VIII. Pointers-RunTime Arrays-LinkedLists

Part 2: LinkedLists and Other Linked Structures (Chap 8: §1-3, §6-8, Chap. 9)

D. Introduction to Lists (88.1)
1. Asan abstract datatype, alist isafinite sequence (possibly empty) of elements with basic operations that vary from one

application to another, but that commonly include:
Construction: Usually constructs an empty list
Empty: Check if list is empty

Go through the list or a part of it, accessing and processing the

elementsin order

Insert: Add anitemat any point in the list.
Delete: Remove an item from the list at any point.

2. Array/Vector-Based Implementation of a List

Data Members:
Store the list items in consecutive array or vect or locations:
a}, 22, §3, s _an
a[0] a[1] a[2] ... a[n-1] a[n] ... a[CAPACI TY-1]
For an array, add any Si ze member to store the length (n) of the list
Basic Operations
Construction: For array: Set nySi ze to O; if run-time array, allocate memory for it
For vect or : letits constructor do the work.
Empty: nySi ze ==
For vect or: Useitsenpt y() operation
Traverse: for (int i =0; i < size; i++)

{ Process(ali]); }
or
i = 0;
while (i < size)
{ Process(ali]);
i ++;
}

Insert: Insert 6 after 5in 3,5, 8, 9, 10, 12, 13, 15

W W W W

3,56,89,10,12, 13,15

Have to to make room.

Delete: Delete 5 from preceding list:

3,5,6,8,09, 10,12, 13,15

t"t;t’t’ ¢

8.9, 10,12 13,15

llon

3;

o

Haveto to close the gap.

VIII. Pointers-RunTime Arrays-LinkedLists X-17

E. Introduction to Linked Lists (8§8.2)

The preceding implementation of listsisinefficient for lists (those that change frequently due to
insertions and deletions), so we look for an alternative implementation . Minimal requirements: We must be able to:

1. Locatethe

2. Given thelocation of any list element, find

3. Determineif at

For the array/vector-based implementation:
1. Atlocation 0
2. Successor of item at location i is at locationi + 1
3. Atlocation size —1

Theinefficiency is caused by #2; relaxing it by not requiring that list elements be stored in consecutive location leads usto
linked lists.

1. A linked list isan ordered collection of elements called each of which has two parts:
(D) part: Storesan ;
()] part: Storesa to the location of the
. If there is no next element, then a special isused.

Also, we must keep track of the location of the first list element.
Thiswill be the , if thelist is empty.

Example: A linked list storing 9, 17, 22, 26, 34:

2. Basic Operations:

Construction:
Empty: ?
Traverse:
while ()
{ Process of node pointed to by ptr;
ptr = of node pointed to by ptr;

VIII. Pointers-RunTime Arrays-LinkedLists

See pp. 391-2
Insert: Insert 20 after 17 in the preceding linked list; suppose pr edpt r points tothe node containing 17.

1
predptr

(2) Set the next pointer of this new node equal to

thus making it point to

predptr
first 9 17 22 29 34
[T 2l A A 2 v 2"
newpt r 3 20

(3) Reset the next pointer of its predecessor to point to

predptr
first 9 17 22 29 34
E_> // // // //
newpt r [3—p» 20

Note that this also works at the end of the list:
Example: Insert a node containing 55 at the end of the list.
(1) asbefore
(2) as before — sets next link to null pointer
(3) asbefore.

predptr[]

first[3—81 9| » 17| » 20/22/29/

S

VIII. Pointers-RunTime Arrays-LinkedLists

X-19

VIII. Pointers-RunTime Arrays-LinkedLists

Inserting at the beginning of the list requires a modification of step 3:
Example: Insert anode containing 5 at the beginning of thelist.
(1) asbefore
(2) sets next link to first node in the list
(3) setfirst topoint to new node.

predptr[]
first 5—» 9 17 20 22 29 34 55
prd ped
// // // 7 e // _—|.|1

EF Note: In all cases,

Deete: Delete node containing 22 from the following linked list; suppose pt r points to the node to be deleted
andpr edpt r pointsto its predecessor (the node containing 20)::

predptrEk ptrEk

first [(G—> 5] 4 9] 4] 17] o 20] 22| »]29] o34

A A A A 7 7 __|.|.|

(1) Doa operation. Set the next pointer in the predecessor

to point to

predptrEk ptrEk

first 5 9 17 20 22 29 34

A A A] 1 __|.|.|

2

predptrEk ptr]

first|3_> 5 9 17 20 22 29 34

R TR,

VIII. Pointers-RunTime Arrays-LinkedLists X-21

Note that this also works at the end of the list.
Example: Delete the node at the end of thelist.

(1) as before — sets next link to null pointer
(2) asbefore

predptrEk pter
first 5 9 17 22 29 34
E-» // // // // // ——|-|-l

Deleting at the beginning of the list requires a modification of step 1:
Example: Delete 5 from the previous list

predptr[] ptrEL
first|3_> 5/ 9/ 17/ 22 4| 29

A A A] __|.|.|

(1) resetfirst
(2) asbefore

predptrE_Hq ptr []

first] 5/,9/,17/,2/,,29_|14

A A A

E# Note: In all cases,

3. Wegain alot with linked lists. Do we lose anything?

We no longer have to each element of the list;
we have direct access only to the first element.

List-processing algorithms that require fast access to each element cannot (usually) be done as efficiently with linked
lists:

Example: Appending avalue at the end of the list:
— Array-based method:
a[size++] = val ue;
or for avector:

v. push_back(val ue);

— For alinked list:

Get anew node; set datapart = val ue and next part =null_value
If list is empty

Set first topoint to new node.
else

Set next part of last node to point to new node.

Other examples are sorting and searching algorithms that require direct access to each element in the list; they can not be
used (efficiently) with linked lists.

X-22 VIII. Pointers-RunTime Arrays-LinkedLists

C. Implementing Linked Lists
1. Linked lists can be implemented in many ways. For example, we could use arrays/vectors. (Read §8.3)

YRRYYY

For nodes:
typedef int DataType; // DataType is type of list elenments
typedef int Pointer; /1 pointers
are array indices free node dat a next
struct NodeType m_» 1
{ —
Dat aType dat a; (1) 2
Poi nter next; 5 3 _ |
i 2 7
For free store:
const int NULL_VALUE = -1; : num\odes- 1
const int nunber Of Nodes = 2048;
' nunNodes- 1 -1
NodeType node[nunber Of Nodes] ;
Poi nter free; [/l points to a
free node

[l Initialize free store
/1 Each node points to the next one

for (int i = 0; i < nunberOfNodes - 1; i++)
node[i].next =i + 1,

node[nunber O Nodes - 1].next = NULL_VALUE;

free = 0;

/1 Maintain free store // as a stack
/1 New operation
Poi nter New()
{ Pointer p = free;
if (free !'= NULL_VALUE)

free = node[free]. next;

el se
cerr << "***Free store enpty***\n";
return p;

}

/1 Del ete operation
voi d Del et e(Poi nter p)
{ node[p].next = free;
free = p;

}

For the linked list operations:

Use node[p] . dat a to accessthe data part of node pointedto by p
Use node[p] . next to accessthe next part of node pointed to by p

Example: Traversal

first;
NULL_VALUE)

Pointer p
while (p !
{

Process(node[p] . data) ;
p = node[p]. next;

VIII. Pointers-RunTime Arrays-LinkedLists

VIII. Pointers-RunTime Arrays-LinkedLists

2. Implementing Linked Lists Using C++ Pointers and Classes

a. To Implement Nodes

cl ass Node

r
publi c:
b
Note The definition of a Node isa (or self-referentia) definition because it uses the name

Node inits definition: the Next member is defined as a pointer to aNode.

b. How do we declare pointers, assign them, access contents of nodes, etc.?
Declarations:

or

Allocate and Dedllocate:

To accessthedat a and next part of node:

or better, use the

Why make data members public in class Node?

This class declaration will be placed inside another class declaration for Li nkedLi st. The datamembers dat a and
next of struct Node will be public inside the class and thus will accessible to the member and friend functions of the
class, but they will be private outside the class.

#i f ndef LI NKEDLI ST
#define LI NKEDLI ST

typedef int DataType;

cl ass Li nkedLi st

{
private:
cl ass Node
publi c:
Dat aType dat a;
Node * next;
}
typedef Node * NodePointer;
L
#endi f

So why not just make Node astruct? We could, but it is common practice to use struct for C-style structs that
contain no functions (and we will want to add afew to our Node class.)

VIII. Pointers-RunTime Arrays-LinkedLists X-25

b. Data Membersfor Li nkedLi st's

Linked lists like

firstl :|—> 9 17 22 26 34
/ / ed ed

are characterized by:

(1) Thereisapointer to the first nodein the list.
(2) Each node contains a pointer to the next node in the list.
(3) Thelast node containsa NULL pointer.

We will call the kind of linked lists we've just considered simple linked lists to distinguish them from other variations
we will consider shortly — circular, doubly-linked, lists with head nodes, etc..

For simple linked lists, only one data member is needed: a pointer to the first node. But, for convenience, another
data member is usually added that keeps a count of the elements of the list:

fi 17 22 26 34
|.rst|3——>g/ ////// __|+
ny Si ze

Otherwise we would have to traverse the list and count the elements each time we need to know the list's length.
(See p. 446)

c. Function Membersfor Li nkedLi st's

Constructor: Makefirst anull pointer and set nySi ze to 0.

Destructor: Why is one needed? For the same reason as for run-time arrays.

If we don't provide one, the default destructor used by the compiler for alinked list like that above
will result in:

firstE——»@/ 7]]2 #%] ,[3
nySize - -l -l _-H‘

Copy constructor: Why is one needed? For the same reason as for run-time arrays.

If we don't provide one, the default copy constructor (which just does a byte-by-byte copy) used
by the compiler for alinked list like L will produce:

fi 17 22 26 34
|‘rstE——>g/ ////// —-|-|1
nySi ze

L

X-26

VIII. Pointers-RunTime Arrays-LinkedLists

d. Other Kinds of Linked Lists (§9.1)

i. In some applications, it is convenient to keep access to both the first node and the last node in the list. Thisisthe
approach in the text:

L
first »| 9 17 22 26 | 34
o ST S B A
aSt E\ 7
nySi ze
ii. Sometimesa is used so that ,

which thus eliminates special cases for inserting and deleting.

first 9 17 22 26 34
] 2334,
The data part of the head node might be used to store some information about the list, e.g., the number of values
inthelist.
iii. Sometimes a isalso used so that

firstE—'?/9/17/22/26/34

(Two or more lists can share the same trailer node.)

iv. In other applications (e.g., linked queues), a linked list is used; instead of the last node containing

aNULL pointer, it contains a pointer to the

For such lists, one can use a single pointer to the |ast node in the list, because then one has direct accessto it and
"amost-direct" accessto the first node.

] O] o 17] W[22] %] |3

VIII. Pointers-RunTime Arrays-LinkedLists

X-27

v. All of these lists, however, are uni-directional; we can only move from one node to the next. In many applications,

bidirectional movement is necessary. In this case, each node has two pointers — oneto its successor (NULL if

thereis none) and one to its precedessor (NULL if thereisnone.) Such alist iscommonly

caled a

(or -linked) list.
T O
9 17 22 26 34
first E— — > —] — >
nySi ze next

vi. And of course, we could modify this doubly-linked list so that both lists are circular forming a

L
| ast |j | | |
9 17 22 26
first D -+ _»—] — 1 >
nySi ze
Add a and we have the implementationused inSTL's | i st class.

D. The STL I i st <T> Class Template

| i st <T>isasequential container that is optimized for insertion and erasure at arbitrary pointsin the sequence.

1. Implementation

As acircular doubly-linked list with head node.

o] L1[]

5

17

22

26

[\

VIII. Pointers-RunTime Arrays-LinkedLists

Its node structure is

struct |ist_node

{

pointer next,
prev;
T dat a;

2. Allocation/Deallocation:

Onthesurface, | i st looks quite smple. But it's allo/deall o-cation scheme is more complex than simply using new

anddel et e operations. To reduce the inefficiency of using the heap manager for large numbers of allo/deallo-cations,
it does it's own memory management.

Basically, for each list of acertain type T:

When anode is needed:

1. If thereisanode on thefreelist, alocate it.
(Thisis maintained as alinked stack in exactly the way we described earlier.)
2. If thefreelist is empty:

a. Call the heap manager to allocate a block (called abuffer) of size (usualy)
4K bytes.

b. Carveit upinto pieces of sizerequired for anode of al i st <T>.

When anode is dedll ocated:

Push it onto the free list.

Whenall lists of thistype T have been destroyed:
Return all buffers to the heap.

3. Comparing | i st with other containers (p. 450)

Property Array vect or deque | ist
Direct/random access ([]) Or Or) X

Sequential access O+ O+ O O+
Insert/delete at front O O O+ O+
Insert/delete in middle O O o] O+
Insert/delete at end Or Or O+ O+
Overhead lowest low low/medium high

Asthetableindicates, | i st does not support direct/random access and thus does not provide the subscript operator [] .

VIII. Pointers-RunTime Arrays-LinkedLists

4. i st iterators (p. 451)

| i st'siterator is"weaker" than that for vect or. (vect or 'siscalled a random access iterator andl i st 'sisa
bidirectional_iterator. They have the following operations in common:

X-29

++ Move iterator to the next element (like
- - Move iterator to the preceding element (like
* dereferencing operator: to access the value stored
at the position to which an iterator points (like
= assignment; for sametypeiterators,itl = it2

setsi t 1'spositionto sameasi t 2's

==and! = forsametypeiterators,itl == it 2 istrueif
itlandit2 areboth positioned at the same element

but bidirectional iteratorsdo not have:

addition (+) and subtraction (-)
the corresponding shortcuts (+=, - =),
subscript ([])

This means that algorithms such assor t () which require direct/random access cannot be used with | i st <T>s.

Example: Construct alist containing first 4 even integers; then output the list.

5. I'i st <T> member functions and operators (See Table 8.1)

6. Sample program illustrating list operations (See Figure 8.8)

