1V. Stacks V-1

IV. Stacks

A. Introduction
1. Consider the 4 problems on pp. 170-1:

(1) Modéel the discard pilein acard game
(2) Modd arailroad switching yard
(3) Parentheses checker

(4) Cdculate and display base-two representation

Remainders are generated in right-to-left order. We need to "stack" them up, then print them out from top to
bottom.

Need a"last-discarded-first-removed,” "last-pushed-onto-first-removed,” "last-stored-first-removed, " "last-generated-
first-displayed" structured data type.

Insummary ... a structure.

2. Definition of astack asan ADT (abstract data type):

A stack is: an collection of data items in which

Its basic operations are;

1.

2. Check if stack

3. : an element of the stack
4. : the of the stack
5. : the of the stack

i i

|

The terminology comes from a spring-loaded stack of platesin a cefeteria:

 Adding aplate pushed those below it are pushed down in the stack

* When a plate is removed from the stack, those below it pop up one
position.

AT
RO ERRRERRRERLY)

|

't
!

f

V-2 1V. Stacks

Il

3. If we had a stack class we could useit to easily develop a short program for the base-conversion problem.
(See pp. 171-2 for the agorithm.)

/* Programthat uses a stack to convert the base-ten
* representation of a positive integer to base two.
*

* |nput: A positive integer
* Qutput: Base-two representation of the nunber

***/

#i ncl ude " St ack. h" [/ our own -- <stack> for STL version
#i ncl ude <i ostreanr
usi ng nanmespace std;

int main()
unsi gned nunber, /1 the nunmber to be converted
r emai nder ; /'l remai nder when nunber is divided by 2
char response; /] user response
do
{

cout << "Enter positive integer to convert: ";
cin >> nunber;

whil e (nunber !'= 0)
{

remai nder = nunber % 2;

nunber /= 2;
}

cout << "Base two representation: ";

whil e ();
{

cout << renmi nder;

}

cout << endl:
cout << "\nMre (Y or N)? ";
cin >> response;

}

while (response == 'Y || response == 'y');

1V. Stacks 1V-3

B. Building a St ack Class

Two steps:
1. the class; and
2. the class.

1. Designing a St ack Class

Designing aclass consists of identifying those operations that are needed to manipulate the "real-world" object being modeled
by the class. Time invested in this design phase payd off, because it resultsin awell-planned class that is easy to use.

Note The operations are described .

At this point, we have no idea what data members will be available, so the operations must be described in some way
that is does not depend on any particular representation of the object.

The resulting specification then constitutes the "blueprint” for building the class.

From definition of stack as ADT, we must have (at |east) the following operations:

. . Initializes an empty stack.)

. operation: Examines a stack and return false or true depending on whether the stack contains any values:
. operation: Modifies astack by adding a value at the top of the stack:

. operation: Retrieves the value at the top of the stack:

. operation: Modifies a stack by removing the value at the top of the stack:

To help with debugging, add early on:
. : Displays all the elements stored in the stack.

2. Implementing a St ack Class

Two steps:
1. Define
2. Define the

a.Selecting Data Members.
A stack must store a collection of values, so we begin by considering what kind of storage structure(s) to use.
Possibility #1:
Usean ar r ay with the top of the stack at position 0.

e.g., Push 75, Push 89, Push 64, Pop
Push 75 Push 89 Push 64 Pop

A WNPEFEO
A WNPEFEO
A WNPEFO
A WNPEFEO
A WNEFEO

+ features:

— features:

V-4 1V. Stacks

Attempt #2 — A Better Approach

Instead of modeling the stack of plates, model a stack of

Keep the bottom of stack at position 0 and maintain a"pointer" myTop to the top of the stack.
e.g., Push 75, Push 89, Push 64, Pop

Push 75 Push 89 Push 64 Pop

4 4 4 4 4

3 3 3 3

2 2 2 2
1 1 1 1 1
0 0 0 0 0
nyTop = __ nyTop = __ myTop = __ nyTop = ___ nyTop = __

Note:

So, we can begin the declaration of our class by selecting data members:

¢ Providean data member to hold the stack elements.
* Providea datamember to refer to the
¢ Providean datamember to indicate the

Problems. We need an array declaration of the form
ArrayElementType nyArray[ARRAYCAPACITY];
— What type should be used?

Solution (for now): Usethe mechanism:

/1l put this before the class declaration

— What about the capacity?

/1l put this before the class declaration

— Then declare the array as a data member in the private section:

Notes:

1. Thetypedef makes St ackEl enent a for i nt. Putting it outside the class makes it
accessible throughout the class and in any file that #i ncl udes St ack. h. [f inthe future we want a stack of
reals, or characters, or . . ., we need only changethet ypedef :

typedef doubl e StackEl enment Type;
or

typedef char StackEl enent Type;
or...

When the class library is recompiled, the type of the array's elements will be doubl e or char or. ..

1V. Stacks V-5

. A more modern alternative that doesn't require using (and changing at ypedef isto usethe

mechanism to build a St ack class whose element typeis left unspecified. The element typeisthen

at compiletime. Well describe this soon. Thisis the approach used in the

Putting the t ypedef and declaration of STACK CAPACI TY ahead of the class declaration makes these
declarations easy to find when they need changing.

If the type St ackEl enent or the constant STACK CAPACI TY were defined as public membersinside the class
declaration, they could be accessed outside the class but would require qualification:

If we were to make the constant STACK _CAPACI TY a class member we would probably make it a
data member:

const int STACK CAPACITY = 128;

Thismakes it a property of the class useable by all class objects, but they do

of STACK_CAPACI TY.

So, we can begin writing St ack. h:

St ack. h

/*

*

Stack. h provides a Stack cl ass.

Basi c operations:
Constructor: Constructs an enpty stack
enpt y: Checks if a stack is enpty

push: Modi fies a stack by adding a value at the top
t op: Accesses the top stack value; |eaves stack unchanged
pop: Modi fies a stack by renoving the value at the top

display: Displays all the stack el enents
Class Invariant:
1. The stack elenments (if any) are stored in positions
0, 1, . . ., nyTop of nyArray.
2. -1 <= nyTop < STACK CAPACI TY

#i f ndef STACK
#def i ne STACK

1V-6 1V. Stacks

cl ass Stack

{
[***** FEynction Menbers ***x*/

public:

[***** Data Menbers *****/
private:

}; /1 end of class declaration

#endi f

b. Function Members

* Constructor :
Simple enough to inline?
cl ass Stack

1
publi c:
/* --- Constructor ---

Precondition: A stack has been decl ared.
Post condi tion: The stack has been constructed as an
enpty stack.

};}/.ehd of class declaration

A declaration
Stack S;
will construct S asfollows:

S 0 1 2 3 4 127

® empty:
Receives Stack containing it as afunction member (implicitly)
Returns: Trueif stack is empty, false otherwise.
Member function?
const function? (Shouldn't alter data members?)

Simple enough to inline?

1V. Stacks

cl ass Stack
{
publi c:

/* -;-.Is the Stack enpty? ---

* Receive: stack containing this function (inplicitly)

* Returns: true if the Stack containing this function is enpty

* and fal se ot herw se

***/

};)/.e.nd of class declaration

Test driver: Output

#i ncl ude <i ostreanr

usi ng nanmespace std;
#i ncl ude " Stack. h"
int main()

Stack s;

}

cout << bool al pha << "s enmpty? " << s.enpty() << endl;

® push:

Receives: Stack containing it as a function member (implicitly)
Value to be added to stack
Returns: Modified Stack (implicitly)

Member function?
const function?
Simple enough to inline?

cl ass Stack

L Add a value to the stack ---

Recei ve: The Stack containing this function (inplicitly)

A value to be added to a Stack

top, provided there's space

CQut put : "Stack full" message if no space for val ue

*
*
* Pass back: The Stack (inplicitly), with value added at
*
*
*

its

**/

Y, o1 énd 6f cl ass decl aration

V-8 1V. Stacks

Definition (in St ack. cc):

voi d Stack: : push()
{
/1 or sinply, = val ue;
el se
cerr << "*** Stack is full -- can't add new val ue ***\n";
<< "Must increase value of STACK CAPACITY in Stack.h\n";
}
Add at bottom of driver:
for (int i =1; i <= 128; i++) s.push(i);

cout << "Stack should now be full\n";
s. push(129);

Output

s enpty? 1

St ack shoul d now be full

*** Stack is full -- can't add new val ue ***

¢ OQutput:
So we can test our operations.
Receives: Stack containing it as a function member (implicitly)
Output: Contents of Stack, from the top down.
Member function? Yes
const function? (Shouldn't alter data members?) Yes
Simple enough to inline? No

Prototype:

/[* --- Display values stored in the stack ---
*

* Receive: The Stack containing this function (inplicitly)
* The ostream out

* Qutput: The Stack's contents, fromtop down, to out
***/

voi d display(ostream & out) const;

Definition in Stack.cpp:
voi d Stack::display(ostream & out) const

{

1V. Stacks

Modify driver:
/*
for (int i =1; i <= 128; i++) s.push(i);
cout << "Stack should now be full\n";
s. push(129);
*/
for (int i =1; i <= 4; i++) s.push(2*i);
cout << "Stack contents:\n";
s.di splay(cout);
cout << "bool al pha << s enpty? " << s.enpty() << endl;

Output
S enpty? true
Stack contents:

= top:

Member function?
const function?

Simple enough to inline? Probably not

Prototype:

/* --- Return value at top of the stack ---

* Receive: The Stack containing this function (inplicitly)
* Return: The value at the top of the Stack, if nonenpty
* Qutput: "Stack enpty" message if stack is enpty

***/

Definition (in St ack. cpp):

St ackEl ement St ack::top() const
{

}

Add to driver at bottom:
cout << "Top val ue:

<< s.top() << endl;

Output

Stack contents:
8

6

4

2

s enpty? fal se
Top value: 8

1V-10 1V. Stacks

< pop:

Member function?
const function?

Simple enough to inline?

--- Renove value at top of the stack ---

* Recei ve: The Stack containing this function (inplicitly)
* Pass back: The Stack containing this function (inmplicitly)
* with its top value (if any) renoved

* Qut put: "Stack-enpty" nessage if stack is enpty.

**/

Definition (in St ack. cpp):

voi d Stack:: pop()

{
/'l Preserve stack invariant
el se
cerr << "*** Stack is enpty -- can't renove a value ***\n";

}

}

Add to driver at bottom:

while (!'s.empty())

{

cout << "Popping " << s.top() << endl
s. pop();

cout << "s enpty? " << s.enpty() << endl

Output

Stack contents:
8

6

4

2

s enpty? fal se
Top value: 8
Poppi ng 8
Popping 6
Poppi ng 4
Poppi ng 2

S enpty? true

1V. Stacks 1V-11

C. Two Applications of Stacks

Use of Stacks in Function Calls

Whenever afunction is begins execution (i.e., is activated), an (or stack frame)
is created to store the current environment for that function. Its contents include:

parameters

caller's state information (saved)
(e.g., contents of registers, return address)

local variables

temporary storage

What kind of data structure should be used to store these when a function calls other functions and interrupts its own
execution so that they can be recovered and the system reset when the function resumes execution?

Clearly need behavior. (Obviously necessary for recursive functions.)

Sousea . Sinceit is manipulated at run-time, it is called the

What happens when afunction is called:

D
(2) Copy its arguments into the parameter spaces
(3) Transfer control to the address of the function's body

So the in the run-time stack is always that of the function

What happens when afunction terminates?

Q) from the run-time stack

(2) Use new top activiation record to

execution of it.

Examples:
int main()

£2(...);

£3(...):
}
void f1(...) {. . .}
void f2(...) {... f1(...); ...}
void £3(...) {... f2(...): ...}

1V-12 1V. Stacks

int factorial (int n)
{if (n <2
return 1;
el se
return n * factorial (n-1);

}

What happens to the run-time stack when the following statement executes?

int answer = factorial (4);

This pushing and popping of the run-time stack is the real associated with function

callsthat functions avoids by replacing the function call with the body of the function.

Application to Reverse Polish Notation

1. What isRPN?

A notation for arithmetic expressions in which

Expressions can be written

Developed by Polish logician, Jan Lukasiewics, in 1950's

notation: operators written the operands
"): operators written the operands
" operators written the operands
Examples:
INFIX RPN (POSTFIX) PREFIX
A+ B A B + + AB
A* B+ C
A* (B+ Q
A-(B-(C-D)
A-B-C-D

1V. Stacks

2. Evaluating RPN Expressions
a "By hand": Underlining technique:

Scan the expression from left to right to find an operator. Locate ("underlineg") the last two preceding operands and
combine them using this operator. Repeat this until the end of the expression is reached.

Examplee 2 3 4 +56 - - *
® 234+56--*® 2 __56--*
® 2756 - -* ® 27 - *
® 27 -1-* ® 2 x ® 28*®|:|

b. Algorithm — using a stack of operands (p. 195)

Receive: An RPN expression.
Return: The value of the RPN expression (unless an error occurred).
Note: Uses a stack to store operands.

1. Initialize an empty stack.
2. Repeat the following until the end of the expression is encountered:
a. Get the next token (constant, variable, arithmetic operator) in the RPN expression.
b. If the token is an operand, push it onto the stack. If it is an operator, then do the following:

(i) Pop thetop two values from the stack. (If the stack does not contain two items, an error due to
amalformed RPN expression has occurred, and evaluation is terminated.)

(ii) Apply the operator to these two values.
(iii) Push the resulting value back onto the stack.

3. When the end of the expression is encountered, its value is on top of the stack (and, in fact, must be the
only value in the stack).

Example: Seep. 196.

To generate code, change (ii) and (iii) to:
(ii") Generatecode: LQAD operandp (iii") Push TEMP# onto stack.
op oper and2
STORE TEMP#

Example: Generatecodefor AB+CD +*

¢. Unary minus causes problems:

Example 5 3 - - ®
53-- ®

Well use adifferent symbol:

1V-13

1V-14 1V. Stacks

3. Converting from Infix to RPN
a. "By hand": Represent infix expression as an expression tree:
A* B+ C A* (B+ 0O ((A+B) *O [/ (D- B

Traversethetreein Left-Right-Parent order to get
Traverse tree in Parent-Left-Right order to get
Traverse treein Left-Parent-Right order to get [must insert ()'s]

b. By hand: "Fully parenthesize-move-erase” method:

1. Fully parenthesize the expression.
2. Replace each right parenthesis by the corresponding operator.
3. Erase all left parentheses.

Examples:

A*B+C® ((A*B +0 ® ((AB*C+ ® AB* C+

A* (B+ 0 ®

((A+B) * O / (D- E) ®

c. Algorithm — using a stack of operators (See pp.199-201)

