I11. Classes 11-1

I11. Classes (Chap. 3)

Aswe have seen, C++ data types can be classified as:

e Fundamental (or ssimple or scaar):
A data object of one of these typesis a single object.
i nt, doubl e, char, bool , conpl ex, and the related types (unsi gned,
short, etc.)
enumerations

e Structured:
These store collections of data
arrays, structs, unions, classes, valarrays, bitsets, and the containers and
adaptersin STL

We have studied all of the fundamental types (except conpl ex) and the data structures C++ gets from C — arrays, structs, and
unions. Wewill now look at classesin detail; pointers (and linked structures that use pointers) and vectors, stacks, queues, and
listsfrom STL will be considered soon.

A. Structs vs. Classes

Similarities between structs and classes

1. Both can be used to model objects with

(also called fields or instance variables).

They can thus be used to process

2. They have essentially the

Differences between structs and classes

1. C does not provide classes; C++ provides both structs and classes.

2. Members of a struct by default are _(can be accessed
).

In C++ they can be explicitly declared to be (cannot be accessed outside the struct).

Members of a class by default are

Thus, choosing which to use is not based on their capabilites. 1t is common practice to use classes to prevent users of a
new data type from (directly) accessing the data members. (We can also enforce this with structs, but thisis not their
default nature.)

Differences between "traditiona” (C) structs and OOP (C++) structs and classes

C++'s structs and classes are extensions of C's structs. They can be used to model objects that have:
« Attributes (characteristics) represented asdata members
and

111-2 I11. Classes

Terminology:
It iscommon to call the two parts of aclass data members and member functions (although "data members® and
"function members" isreally more correct.) We will use the terms interchangeably.

Thisisan important difference because it leads to a whole new style of programming — object-oriented rather than

procedural. Objects can how be , carrying their own operations around with them

— commonly called the principle— instead of having to be shipped off to
some external function that operates on them and sends them back.

B. Structure and Design of a Class (§11.1)
1. Declaring aClass

a Usual Form:

cl ass ClassName

public:
Decl arations of public members
private:
Decl arations of private members
b
Notes:
1. The datamembers are normally placed in the section of a class; the function membersin the

section.

2. Some programmers prefer to put the private section first because this is the default access for classes so the

pri vat e: specifier could be omitted. However, we will put the public interface part of the classfirst and the
hidden private details last.

3. Although not commonly done, a class may have several private and public sections; the keywordspri vat e: and
publ i c: mark the beginning of each.

b. Access

(i) A particular instance of aclassiscalled an

ClassName object name;

(ii) Private members can be accessed

(except by functions described later).

(ii1) Public members can be accessed

ClassName object name;

To access them outside the class, one must use the

c. Where are class declarations placed?

Usudly in a header file whose nameisClassName. h . Thelibrary isthen called a

I11. Classes 111-3

2. Example: Declaring aclass Ti me — Version 1

R T 11 ST ¢ T i e R R
This header file defines the data type Tinme for processing tine.
Basi c operations are:

Set: To set the tine

Di splay: To display the tine

#i ncl ude <i ostreane
usi ng namespace std;
class Time

/******** lvenber functlons ********/

/* Set sets the data nenbers of a Tinme object to specified val ues.
* See Fig. 3.1 for docunentation */

voi d Set ()

/* Display displays time in standard and military format using
* output stream out.
* See Fig. 3.1 for docunentation */

voi d Display() ;

/********** Dala NEI’T’OGI’S **********/

unsi gned .
char ; I/ "A or 'P
unsi gned ; /] mlitary tinme equival ent

}; /1 end of class declaration

Notes

1. The"ny" in names of data membersis simply to remind us of the "I-can-do-it-myself" nature of a class object.

2. The const attheend of Di spl ay() 's prototype makesit a , which means that

. Itisgood practice to protect the

data membersin this way from accidental modification.

11-4 I11. Classes

3. Why not make all members public?
So they

Why? Otherwise programmers may use them in programs, other classes, libraries, . . .

However, the to improve storage, simplify

algorithms for operations, etc., and all programs, classes, . . . that access them directly must then be modified.

Therefore:

p Always define data members of a class as private.

K eeping the data members "hidden" forces programs to interact with an object through its

which thus provide the between programs and the class. If thisinterface does not change,

then programs that use an object will not require change.

3. Implementation of a Class

Usually, only the prototypes of the member functions are placed inside the class declaration to

— definitions are outside.

However, when a declaration of some public item such as atype, constant, or function isinside a class declaration —

another name for "function prototype" is"function declaration” — and is then referenced or defined outside the class

declaration, the compiler must be informed where the declaration/prototypeis

Thisis accomplished using the which has the form
Thisisreferred to asthe or name of I'temName.
Example:

cl ass Sonet hi ng
publi c:

const int CAPACITY = 100;
typedef doubl e ArrayType[CAPACI TY];

void Print(ArrayType a, int itsSize);
}

I11. Classes 111-5

Traditionally, definitions of member functions have been put in an implementation file ClassName. cpp
corresponding to the class' header file. Thisisdoneto

. (Unfortunately, the class data members,

which store data and are therefore part of the implementation, must bein the. h file))

With the increasing use of , however, this practice is becoming less common because current

compiler technology doesn't permit this split for templates — everything has to be in the same file. Thus the reason for
dropping the ™. h" from standard classlibraries. They'reredly class-template libraries, and there are therefore no

corresponding *. cpp" file.

4. Example: Definitions of Member Functionsfor class Ti me — Version 1

[** Time.cc -- inplenments the Tinme menber functions **/
#i ncl ude "Tine. h"
[*** Wtility Functions -- Prototypes ***/

int ToMIlitary(unsigned hours, unsigned mnutes, char ampm;

[]----- Function to inplenent the Set operation -----
voi d (unsi gned hours, unsigned m nutes, char am pnm
{

/'l Check

if (hours >= 1 && hours <= 12 &&
mnutes >= 0 & mnutes <= 59 &&

(ampm=="A || ampm=="F"))

{

myHours = hours;

myM nut es = m nut es;

myAVbr PM = am pm

myMITinme = ToMlitary(hours, mnutes, am pn;
}
el se

cerr << "*** Can't set tine with these values ***\n";
/1l Object's data nmenbers remain unchanged

}
[]----- Function to inplenent the Display operation -----
voi d (ostream & out) const
{
out << nyHours << ':'
<< (nyMnutes < 10 ? "0" : "") << nyM nutes
<< ' ' << nyAMorPM << " M ("

< nyMITinme << " ml. tine)";

111, Classes

[*** Wtility Functions -- Definitions ***/

/* ToMlitary converts standard time to military tine.
*

* Receive: hours, mnutes, ampm
* Return: The mlitary tine equivalent

**/

int ToMIlitary (unsigned hours, unsigned ninutes, char am pn)

if (hours == 12)
hours = 0;

return hours * 100 + minutes + (ampm=="P ? 1200 : 0);

}

5. Testing the class

/'l Test driver

#i ncl ude <i ostreanp
usi ng namespace std;

int main()

{

cout << "W&'ll be eating at ";

cout << endl;

Execution:

We'll be eating at 5:30 P.M (1730 military tine)

ID Again, note the difference from the procedural approach. Rather than package up the object and send it off to some

function for processing, we

To set my digital watch to 5:30 P.M., | don't wrap it up and mail it off to Casio and have them do it; rather, | push
abutton! To display thetime, | don't wrap up my watch and mail if off to Casio and have them tell me what time

itis. Ridiculous! | haveit display the timeto meitself, perhaps pushing a button to turn on the backlight so | can
seeit.

I11. Classes 11-7

6. Some Notes

a. Member functions "Inside" an object so don't pass object to them as a parameter. Another way to view this:

They receive the class object to be operated on implicitly, rather than explicitly via a parameter.

Non-member functions: "Outside" an object, so to operate on an object, they must receive it via a parameter.

b. Public items like types and constants declared inside a class declaration must be qualified with the class name when
used outside the class:

ClassName: : ItemName

Constants are usually specified to be static so thisisaglobal class property that can be accessed by all objects of that
class type rather than having each such aobject carry around it's own copy of that constant.

c. Nontrivial member functions:
Usually: Prototypewithin the class
Define outsided the class; must qualify their names:

ClassName: : FunctionName(. . .)

d. Simple member functions:

Usually: Specify that it be an function, which suggests to the compiler that it

with parameters
replaced by arguments, thus avoiding the usual overhead of afunction call. This can be done in two ways:

1. Prototype the function inside the class declaration as usual, but

its name as usual:

I n ClassName. h
cl ass ClassName

/1 Public section -- function nenbers
ReturnType SimpleFunction(param_list);

/|l Private section -- data nenbers

ReturnType ClassName: : SimpleFunction(param_list)

/1 function body

}

111. Classes

2. Simply

In this case, it need not be prototyped, its name need not be qualified, and thecompiler will treat it as an inline
function:

InClassName. h
cl ass ClassName

{

/!l Public section -- function nenbers

ReturnType SimpleFunction(param_list)

/1 function body
}

/|l Private section -- data nenbers

b
But use this method only for simple functions to avoid interface clutter.

d. In Set () , we tested whether the arguments are valid:

if (hours >= 1 && hours <= 12 &&
mnutes >= 0 && ninutes <= 59 &&
(ampm=="A" || ampm=="FP))

nmyHours = hours;
nyM nutes = m nut es;

{

el se .

Thisisto ensure that the following class invariant istrue:

This classinvariant isintended to guarantee that the

so that other function members can be sure of this Thus, whenever an operation modifies

any of the data members, we should always check that

An alternative way to test thisisto use the mechanism (from<cassert >—atleast
during debugging — which:
« Accepts a boolean condition;

« If that condition is true, execution continues as usual .
« |If the condition is false, execution halts and an error message is displayed.

#include
usi ng nanmespace std;

[]----- Function to inplenent the Set operation -----
voi d Tine:: Set (unsigned hours, unsigned mnutes, char ampm

{

(hours >= 1 && hours <= 12 && m nutes <= 59 &&
(am_pm == "A" ||am_pm am pm == 'P"'));

nmyHours = hours;

nyM nutes = mi nut es;

111. Classes

Testing:

If wechangedriver.cpp as. neal Ti ne. Set (13, 30, 'P');
execution terminates with the following message:

Time.cpp:11: failed assertion
m nutes <= 59 && (am pm=="A
1OT trap

A third dternative isto

“hours >= 1 && hours <= 12 &&
|| ampm=="P")"

that the calling function can

action

[]----- Function to inplenment the Set operation -----

voi d Tine:: Set(unsigned hours, unsigned m nutes, char am pm

/'l Check class invariant
if (hours >= 1 && hours <= 12 &&

m nutes >= 0 &% m nutes <= 59
(ampm=="A ||ampm=="P))
}
el se
{
}

}

&&

To catch this exception, a calling function might contain

{
nmeal Ti me. Set (13, 30, 'P');
cout << "This is a valid time\n";
}
{
cout << "ERROR " << badTine << endl;
exit(-1);
cout << "Proceeding. . .\n";

When executed, the output produced will be

ERROR *** [llegal initializer

val ues ***

and take appropriate

111-10 I11. Classes

7. Class Constructors

a. Recall that constructing an object consists of:

(@D} for the object, and

2 the object.

In our example, after the declaration
Ti me neal Ti ne;

memory has been alocated for meal Ti e, but it's data members are not initialized (and are likely to contain "garbage”
values). It would be better if:

« the programmer could specify initial valuesfor neal Ti ne
« default values were used if noinitial values are specified.

b. This can be accomplished using

Properties:

(1) Their primary role (for now) isto of an object
with values (either default values or values provided as arguments)

(2) Their names are always the same as the

(3) They are always function members and are (almost always) prototyped in the public section.

(4) They do not return avalue; they have (not even voi d).

For this reason, documentation that describes their behavior commonly specify:

1. What valuesthey receive (if any) via parameters:

2. Preconditions Conditions that must be true before the function is called.
and

3. Postconditions: Conditions that must be true when the function terminates.

(5) Often they are quite simple and can be inlined in either of the two ways escribed earlier.

(6) Constructors get called

(7) If no constructor is given in the class,

which allocates memory and initializes it with some default (possibly garbage) value.
A default constructor is one that is used when the declaration of an object contains no initial values:

ClassName object_name;

(8) If we supply a constructor for a class, then we must also provide a default constructor.

111. Classes

c. Example: Constructorsfor Ti e class

InTine. h

class Tine

[****xxxx% Nenber functions *****xxx*/

publi c:

[***** (Cl ass constructors *****/

[* --- Construct a class object (default).

* Precondition: A Tinme object has been decl ared.

* Postcondition: The Tine object is initialized to 12:00 A M ;

* that is, the nyHours, nyM nutes, and nyANWbr PM

* menbers are initialized to 12, 0, 'A, respectively,
* and nyMITinme to O.
**/
[* --- Construct a class object (explicit val ues).

Precondi ti on:
Recei ve:

*
*
*
*
* Postcondition:
*
*
*
*

A Time object has been decl ared.

Initial values initHours, initMnutes, and

i ni t AMPM

The myHours, nyM nutes, and nmyANbr PM nenbers
of theTinme object are initialized to initHours,
initMnutes, and initAMPM , respectively, and
myMI|Tine to the corresponding mlitary tine.

***/

/1 . o;[hér menber function prototypes

/********** Data anbers **********/

private:

}; /1 end of class declaration

111-11

111-12 I11. Classes

class Time

/******** FUI’]C'[IOI’] Ivbrrbers ********/
publi c:

[***** (Class constructors *****/

[* --- Construct a class object (default).

Ti me()

nmyHours = 12;

myM nutes = O;
nmyAMor PM = ' A’
nyM I Tine = 0;

/1 other menber function prototypes

/********** Mta NEI’T‘bGI’S **********/
private:

}; /1 end of class declaration

AddtoTi me. cpp

#i ncl ude <cassert>
usi ng namespace std;

[]----- Function to inplenent the explicit-value constructor -----

/'l Check class invariant
assert(initHours >= 1 & initHours <= 12 &&
inftMnutes >= 0 & initM nutes <= 59 &&

(initAMPM == "A" || initAMPM == "P"));
my Hours = ;
myM nutes = ;
my AMor PM = ;
myMi | Time = ToM litary(initHours, initM nutes, initAMPM);

}

(unsigned initHours, unsigned initMnutes, char initAWM

I1l. Classes
Testing# 1
Ti re neal Ti ne,
bedTi me(11, 30,' P);
Creates and initializes 2 Time objects:
Default Constructor Explicit-Value Constructor
neal Ti ne bedTi ne
nyHours | | nyHours []
myM nut esf | myM nut esf |
my AMbr PM my AMbr PM
nyM I Time[] nyM I Time[]
Member functions Member functions
meal Ti me. Di spl ay(cout); Execution:

cout << endl:
bedTi me. Di spl ay(cout);
cout << endl;

Testing # 2

Ti me neal Ti ne,
bedTi me(13,0,' P');

Note: We could combine both constructors into a single constructor function by using

Replace constructorsin Ti ne. h with:

/* --- Construct a class object.

A Time object has been decl ared.

A Tinme object has been decl ared.

Initial values initHours, initMnutes, and

Precondi ti on:
Precondi ti on:
Recei ve:

12:00 AM (0 ml. tine)
11:30 P.M (2330 nmil. tine)

Execution:

Time. cpp: 12: failed assertion
“initHours >= 1 && initHours <= 12 &&
initMnutes <= 59 &&

(initAMPM == "A" || initAMPM == 'P")"
1OT trap

111-13

i nit AVPM (defaults 12, 0, "A)

Post condi ti on: The myHours,

nyM nutes, and nyAMor PM nenbers of

the Tinme object are initialized to initHours,

i ni tM nutes,

and init AMPM , respectively.

I11. Classes

Tedting:
Ti e neal Ti ne,
t1(5), t2(5, 30), t3(5, 30, 'P);
Creates 4 Time objects:
nmeal Ti ne tl t2 t3
nyHours [[nyHours [——_J| |nyHours [|nyHours [____]
myMnutesL]| [nyMnutesT_____J[[myMnutesl_____1| [nyMnutes]
nyAMrPM[____]| |nyAMrPM[____] |nyAMrPM[____]| [nyAMrPM[____]
nmyM | Ti ne|] nyM | Ti ng| | [nyM I Ti el] nyM | Ti ng| |
Member functions Member functions Member functions Member functions

Execution:
meal Ti ne. Di spl ay(cout);
cout << endl; 12:00 AM (0 nil. tine)
t1. Di splay(cout); cout << endl; 5:00 AM (500 nil. tine)
t2.Di splay(cout); cout << endl; 5:30 AM (530 nil. tine)
t3. Di splay(cout); cout << endl, 5:30 P.M (1730 nil. tine)

Question: What happens with the declaration
Tinme t(5, 'P);
Will it create Ti me object t with values5, 0, 'P' initsdata members?

All parameters with default arguments must appear after all parameters without default arguments.

9. Copy Operations

Two default copy operations are provided:

1. Copyin 2. Copyin

Each makes a (byte-by-byte) copy of the data members of the object.

Examples:

Both:
1. Allocate memory for t
2. Copy data members of bedTi ne intothem sot isacopy of bedTi e :

t bedTi ne
myHour s nmyHour s
nyM nutes[__30_| nyM nutes[__30_|
nyAvbr PM 2| 4 | myavor P P
nyM | Ti me[2330] nyM | Ti me[2330]

Time t =

also does: Right side calls the explicit-value constructor to construct a (temporary) Ti me object and then copiesitintot .

Note: These are not assignments; a default iscalled.

I11. Classes [11-15

Thereis adefault copy operation for assignment.

Example:

copies the members of meal Ti nme intot , replacing any previous values:

t meal Ti ne
nyHours [12_] nyHours [12]
nyMnutes[0] q— | ™M nut es[_0]
nyAMrPM [A] nyAMOrPM [A]
nyM 1 Ti e [p] nyM | Ti me g

9. Access (Extractor) Functions

Data members are private; they cannot be accessed outside the class. It is often necessary, however, to make the values
stored in some or all of these members accessible. For this, access (or extractor) member functions can be provided.

Example:

Problem: To add extractorsto classTi ne:
(We will do this only for the myHour s member; the others are essentially the same.)
Specification:
Receives:

Returns:
Asusual, the specification tells us how to prototype the function:

 If wedeclareit asamember function, then it will be "inside" the Ti e object and
S0 no parameters (Ti me or otherwise) will be needed.
» Thefunction returns myHour s, which is an integer.

In addition, because this function simply retrieves the value stored in a data member, it is simple enough to

Also because it does not modify any data members it should be prototyped (and defined) as a function.

AddtoTi ne. h

class Tine

/********** Dala NEI’T’OGI’S **********/

/******** 'verrber functlons ********/
publi c:

[***** Data Retrievers *****/

/* Hour Accessor
* Receive: The Time object containing this function (inplicitly)
* Return: The value stored in the nyHours nmenber of the Tine
* obj ect containing this function

***/

/1 and simlar functions for nyMnutes, nyAMorPM and nyM I Tine retrieval

111-16 I11. Classes

/********** Data 'vbn«bers **********/
private:

}; }/.e.nd of class declaration

[]----- Definition of Hour()

i nl i ne unsigned Ti ne:: Hour() const;

{ }
Ti e meal Ti ne; [Execution:
cou'.[<< " Hour: " << meal Tinme. Hour () << endl; H Hour: 12

9. Output and Input — Overloading Operators — Friend Functions

Add output operation to a class early so that it can be used for debugging.

It is convenient to overload oper at or << for a Ti me object so we can write

cout << "W&'ll be eating at " << neal Tinme << endl;
instead of
cout << "W&'ll be eating at " ;

meal Ti ne. Di spl ay(cout);
cout << endl;

a. Overloading operators:
— In C++, operator D can be implemented with the function

— If amember function of aclass C, and a is of type C, the compiler treatsa D b as

— If not amember function of aclass C the compiler treatsa D b as

b. Overloading Output Operator <<

Can oper at or <<() beamember function? No, because the compiler will treat
cout <<t
as

which would mean that oper at or <<(') would have to be amember of class ost r ean

Putting the prototype
ostream & operator<<(ostream & out, const Tinme &t);
inside the class declaration causes a compiler error like:

"Tinme::operator <<(ostream & const Tinme &' nust take exactly one argunent

because making oper at or <<(') amember function of Ti M meansthat it already has the Ti ne object containing
it as an (implicit) parameter, so it can't have two more.

I11. Classes

Option 1: Put its prototype in the header file Ti me. h but outside the class declaration.

and it's definitionin Ti Me. cpp

Actually,

because it is so simple, weinline it by putting it's definition in Ti me. h:

class Tine

{

publi c: /1 documentation onmtted to save space here

Tinme();

Ti re(unsi gned initHours, unsigned initMnutes, char initAVWM;
int Hour() const{ return nyHour; }

int Mnute() const{ return nyMnute; }

char AMPM) const{ return nyAMor PM 1}

int MITime() const{ return nyMITine; }

voi d Di spl ay(ostream & out);

private:

/*

unsi gned myHours,
myM nut es;
char mnmyANbr PM /[l "A or 'P
unsi gned nyM I Ti rre; /[l mlitary tinme equival ent
/1 end of class declaration

--- operator<< displays tine in standard and mlitary fornat
usi ng ostream out.

Recei ves: An ostream out and a Tinme object t

CQut put : The tinme represented by the Time object t
Passes back: The ostreamout with t inserted into it.
Return val ue: out

Why 1st parameter areference parameter?
The ostream gets modified so must be passed back.

Why 2nd parameter a const reference parameter?
To avoid the overhead of having to copy a class object.

Why return areferenceto out ?

Sowecan
For example:
Output
cout << tl << endl << t2 << endl; 5:00 AM (500 ml. tine)
5:30 AM (530 ml. tine)
Because<< is , thisis evaluated as
So first function must return SO expression becomes

which is evaluated as

-17

111-18 I11. Classes

Option 2: Replace D spl ay() with oper at or <<:

Replace the prototype of Di spl ay() inTi ne. h

class Tine

{
publi c:
[***** | [O Functions *****/
[* --- operator<< displays tine in standard and mlitary format
usi ng ostream out.
Recei ves: An ostream out and a Tine object t
Qut put : The tine represented by t
Passes back: The ostreamout with representation of t
inserted into it.
Return val ue: out
__ */
ostream & operator<<(ostream & out, const Time & t);
b

And replace the definition of Di spl ay() inTi me. cpp

[]----- Function to inplenment ostream output -----

ostream & operator<<(ostream & out, const Time & t)

{

out << t.nyHours << ':'
<< (t.nmyMnutes < 10 ? "0" : "") << t.nyMnutes
<< ' ' < t.myAMrPM<< " .M ("
< t.nyMITime << " ml. time)";

return out;

A function that a class names as afriend is a to which the class has granted

permission to

Note Becausea friend function is not a function member:
» It'sdefinitionisnot qualified using the class name and the scope operator (: :).
» |t receives the time object on which it operates as a parameter
» |t usesthe dot operator to access the data members.

b. Input
To add an input operator to our Ti e class, we proceed in much the same way as for output. We could either:

1. Add amember function ReadTi me() that reads values and stores them in the data members of aTi ne object;
then call it from non-member function oper at or >>()

2. Declareoper at or >>() tobeafriend function so that it can access the data members of aTi ne object and store
input valuesin them.

I11. Classes 111-19

Inour original version of this new data type, we had two other basic operations, comparing two Ti mesto determineif one
isless than another, and advancing aTi e by a given number of hours and minutes. We will now consider how these can
be added to the class.

10. Adding Relational Operators:

We will describe how to add only one of the relational operators — less than — the others are similar.

Specification:
Receives. Two Ti ne objects
Returns: Trueif thefirst Ti me object islessthan the second;

false otherwise.
Question: Should it be a member function?

Question to help in deciding: Should it be inside the Ti ne class from whereit can
operate on the Ti ne object that contains it and another external Ti e object
or
should it be outside the class from where it can operate on any two Ti e
objects?

Answer: Either will work, but in keeping with the OOP "I-can-do-it-myself" principle of making objects self-
contained, we usually opt for using member functions whenever possible.

In this case, we might better rephrase our specification as:
Receives: A Ti ne object (and the current object implicitly)

Returns: Trueif | (the Ti me object containing this function) am less than the time object received;
false otherwise.

AddtoTi ne. h:

[***** Rel ational operators *****/
/* --- operator< determines if one Tine is | ess than another Tine

Receive: A Tinme t (and the current object inplicitly)
Ret ur n: True if time represented by current object is <'t.

Because of the simplicity of thisfunction weinlineit in either of the two ways described earlier; for example, put it's
inlined definition after the end of the class declarationin Ti ne. h:

};./} end of class declaration

111-20 I11. Classes

For the external perspective:
class Tine
{
publi c: /1 menber functions
[***** Rel ati onal operators *****/
[* --- operator< deternmines if one Tine is | ess than another Tine

Receive: Two Tines t1 and t2

Ret ur n: True if time tlis less than time t2/
__ * [
}; /1 end of class declaration
12. Adding Increment/Decrement Operators:
Specification:
Receives: A Ti ne object (perhapsimplicitly)
Returns: The Ti nme object with minutes incremented by 1 minute.
Question: Should it be amember function? Yes
AddtoTi ne. h:
[***** | ncrement operator *****/
[* --- Advance() increnents a Tine by 1 mnute.
Recei ve: Current time object (inplicitly)
Pass back: The Tine object with its mnutes increnented by 1.
__ * [

voi d Advance();

AddtoTi ne. cpp:

[]----- Function to inplenment Advance() -----

voi d Time:: Advance()
{
myM nut es++;
myHours += nyM nutes / 60;
myM nutes % 60;
if (nyMITine == 1159)
myAVbr PM = ' P';
else if (nyMITime == 2359)
nmyAvbr PM = ' A’ ;
/'l el se no change
myMI|Tinme = ToMlitary(nyHours, nyM nutes, nyAMWorPM ;

I11. Classes -21

We could overload oper at or ++() but how do we distinguish between
prefix ++ and postfix ++7?
Solution: In C++,
oper at or ++() with no parametersis prefix
oper at or ++(i nt) with oneint parameter is postfix
[Thei nt parameter isnot used in the definition.]

13. Problem of Redundant Declarations

A classlike Ti me might be used in a program, libraries, other class libraries, and so it could easily happen that it gets
included several timesin the same file —

eg.,
Program needs Ti e class, so it #i ncl udes" Ti ne. h"
Program also needslibrary Li b, so it #i ncl udes"Li b. h" ... butLib.h
also #i ncl udes™" Ti me. h"
Thiswould cause "redeclaration” errors during compiling.
How do we prevent the declarationsin Ti ne. h from being included more than once in afile?

Use

Wrap the declarationsin Ti ne. h inside preprocessor directives like the following:

[The preprocessor scans through afile removing comments, #i ncl uding files, and processing other directives
(which begin with #) before the file is passed to the compiler.]

- ¥%%% Usually the name of the class in all caps

The first directive tests to see whether the identifier TI VE has been defined.

If it has not:
Processing proceeds to the second directive, which defines T1 ME (to be 1),
and then continues on through what follows and on to the #endi f and beyond.

If it has been defined:
The preprocessor removes al code that followsuntil a#el i f, #el se, of #endi f
directive is encountered.

Thus, the first time the preprocessor encounters a class declaration like Ti e, it definesthe name T1 ME. If it encounters
the class declaration again, since Tl ME has been defined, al code between #i f ndef Tl ME and#endi f is stripped, thus
removing the redeclaration.

