II. Data Structuresand ADTs

Il1. Introduction to Data Structures and Abstract Data Types — C-Style Types

A. Introduction (82.1)

One important aspect of the design phase is the selection and design of appropriate data types to organize the datato be
processed; indeed, thisisthe real essence of OOP (object-oriented programming).

Example 1: Trans-Fryslan Airlines (pp. 30-31)

Attempt 1:
enum Seat St at us { OCCUPI ED, UNOCCUPI EL} ;
Seat Status seatl, seat2, . . . , seatlO0;

Simple data organization, but horrible algorithms for the basic operations!

Attempt 2:
const int MAX SEATS = 10; // upper limt on the nunber of seats

enum Seat St at us { OCCUPI ED, UNOCCUPI EL} ;
typedef Seat Status Seat Li st [MAX_SEATS] ;

Seat Li st seat;
More complex data organization, but much nicer algorithms for the basic operations!

® Quite often there's a tradeoff:

«

Example 2: Searching an online phone directory

Linear search?
OK for Calvin College, but too slow for Grand Rapids or New Y ork

® isan important factor. May have to restructure the data set for
efficient processing — e.g., keep it ordered and use binary search or an indexed sequential search

Example3: Compiler lookup of an identifier's memory address, type, . . . in asymbol table

Linear search? No, too slow
Binary search? No, too much work to keep sorted
Use hash tables

® is an important factor.

Example 4: Text processing

Store in an array / vector?
OK for analyzing text analysis— word counts, average word length, etc.
Not for word-processing — Too inefficient if many insertions & deletions

® isan important factor

11-2 II. Data Structures and ADTs

Definitions
1. An abstract data type (ADT) s

together with

Why "abstract?' Data, operations, and relations studied

not

Example:
Dataitems. seatsfor TFA
Basic operations. find unoccupied sets, reserve a set, cancel a seat assignment.

2. Animplementation of an ADT consists of

Examples: Attempts 1 and 2 for TFA

3. Data abstraction: Separating the of adatatype fromits
An important concept in software design.

Usually the storage structures / data structures used in implementation are those provided in alanguage or built from them.
So we look first at those provided in C++. We begin by reviewing the simple types— i nt, doubl e, etc. — and then the
structured ones.

B. Simple Data Types (§2.2)

Memory:

2-state devices «

Organized into and (machine dependent — e.g., 4 bytes).
Each byte (or word) has an making it possible to store and retrieve contents of any given memory location.
Therefore:

* The most basic form of data:

= We can view simple data types (values are atomic — can't be subdivided) as ADTs.

= Implementations have:
Storage structures. memory words

Algorithms: system hardware/software to do basic operations.

II. Data Structures and ADTs

1. Boolean data

Datavaues. {f al se, true}
InC/C++: fal se =0, true =1 (or nonzero)
Could store 1 value per bit, but usually use a byte (or word)

Basic operations: and: && (See bit tables on p. 34)
or: ||
not: !

2. Character Data

Store numeric codes (ASCII, EBCDIC, Unicode) in 1 byte for ASCII and EBCDIC,
2 bytes for Unicode (see examples on p. 35).

Basic operation: comparison to determine if =, <, >, etc. — use their numeric codes

3. Integer Data
Nonegative (unsigned) integer: type unsi gned (and variations) in C++

Store its base-two representation in a fixed number w of bits (e.g., w =16 or w = 32

88 =

Signed integer: typei nt (and variations) in C++
Store in afixed number w of bits using one of the following:
a Sign-magnitude representation

Save one hit for sign (0 = +, 1 = -) and use base-two representation in the other bits.
88 ® (0000000001011000 -88 ® 1000000001011000

sign bit sign bit

® Not good for arithmetic computations

b. Two's complement representation

For n > 0: Use ordinary base-two representation with leading (sign) bit O

For —n:
(1) Find w-bit base-2 representation of n
(2) Complement each hit.
(3) Add 1
(From right, change all 1'sup to first 0; changethisOtoal.)

Example: —88

1. 88 asa 16-bit base-two number 0000000001011000
2. Complement this bit string
3. Add1

® Good for arithmetic computations (see p. 38)

11-4 II. Data Structures and ADTs

c. Biased representation

Add a constant bias to the number (typically, 2W—1);
then find its base-two representation.

Examples:
88 using w = 16 bits and bias of 215 = 37768
1. Add the bias to 88, giving 32856
2. Represent the result in base-two notation: 1000000001011000
Note: For n3 0, just change leftmost bit of binary representation of nto 1

—388:
1. Add the biasto -88, giving 32680
2. Represent the result in base-two notation: 0111111110101000

® Good for comparisons; so, it is commonly used for exponents in floating-point representation of reals.

d. Problems:

® . Too many bhitsto store.

® Not a perfect representation of (mathematical) integers; can only store afinite (sub)range of them.

4. Real Data
Typesf | oat anddoubl e (and variations) in C++

| EEE Floating-Point Format
Single precision:
1. Write binary representation in floating-point form:
bi.bobsz ... = 2K with each bj abit and b; = 1 (unless number is 0)
—_—— _
mantissa exponent
or fractional part

2. Store:
— sign of mantissain leftmost bit (0= +,1=-)
— biased binary rep. of exponent in next 8 bits (bias = 127)
— bitsbobg . . . inrightmost 23 bits. (Need not store b;— know it's 1)

Example: 22.625 = 10110.101» (seep.4l)
Floating point form: 1.0110101» ~ 24

sipn

[t TolofofeTo oo e fofafololofafoTolofafoToofoToT o]
uxgn?nunl D'I'rlnvliﬁh"rl

II. Data Structures and ADTs 11-5

Problems:

® Exponent overflow/underflow (p. 41)
Only afinite range of reals can be stored exactly.

® Roundoff error (pp. 41-42))

— Only afinite subset of this range of reals can be stored exactly.
(Most reals do not have terminating binary representations.)

— Roundoff error may be compounded in a sequence of operations.
(Some of the usual laws of arithmetic do not hold — associative, distributive)

— Be careful in comparing realswith==and! =.

Assignment #1

® Be ableto answer the questions in Quick Quiz 2.2.
® Write out the following to hand in next Wednesday, Feb. 10:

Exercises2.2 1
10, 12 (Exers 2, 4 in sign-magnitude)
16, 18 (Exers 2, 4 intwo's complement)
22,24 (Exers 2, 4in biased notation)
27, 32, 37, 38, 40, 43

We've been looking at simple types. Now we look at structured data types (also called data structures) that store collections of
data. Wewill first review/ introduce arrays and structs from a "traditional” point of view (i.e., as used in C and many other
languages). Classeswill be considered in detail very soon. A large part of this course will focus on how these (and other) data

types are used to construct other useful data types.

II. Data Structures and ADTs

C. C-Style One-Dimensional Arrays (82.3)
1. Def of an array as an ADT:

A

where the basic operation is

Properties
« Fixed number of elements

= Must be ordered so there is afirst element, a second one, €tc.

= Elements must be the same type (and size);\ use arrays only for homogeneous data sets.

= Direct access. Access an element, just by giving its location — the time to access each element is the same for all
elements, regardless of position.

[In contrast to sequential access. To access an element, must first access all thosethat precedeit.]

2. Declaring arrays in C++
element_type array_ name[CAPACITY];
where
element_type is any type,
array_name isthe name of the array — any valid identifier.

CAPACITY (apositive integer constant) is the number of elementsin the array

® The compiler reserves a block of consecutive memory locations, enough to hold CAPACITY values of type
element_type. (These are consecutive memory locations, except possibly if CAPACITY or the size of
element_type objectsisvery large).

The elements (or positions) of the array, areindexed

Example:

or better, use a named constant to specify the array capacity:
const int CAPACITY = 100;

Note Can use typedeT with array declarations; for example,

const int CAPACITY = 100;

® How well does thisimplement the general definition of an array:
Asan ADT In C++

ordered - ¥4 %% %% %1% % ® indicesare numbered 0, 1, 2, . . ., CAPACITY - 1
fixed size - %% %%%%%® CAPACITY specifiesthe capacity of the array
sametypeelements - %% % ® element_type isthetype of elements

direct access— %% % %2 Y% ® Subscript operator []

II. Data Structures and ADTs -7

3. Subscript operator
Thesubscript operator [] isan actual operator and not simply a notation/punctuation as in some other languages.

Its two operands are an and an (or subscript) and is written

array_hame[1]

Herei isan integer expressionwithO£ 1 £ CAPACITY —1. This subscript operator returns a

so it isavariable, called an

(or) variable whose type is the specified e lement_type of the array.

This means that an array reference can be used on the |eft side of an assignment, in input statements, etc. to store avalue
in a specified location in the array.

Examples:
/|l Zero out all the elenents of score

/! Read values into the first nunBScores el enents of score

/1 Display the values stored in the first nuntScores el enents of score

4. Array Initialization
In C++, arrays can be initialized when they are declared.
a. Numeric arrays:
element_type num_array[CAPACITY] = {list_of _initial_values};
Example:

declaresr at e to be an array of 5 real values and intializesr at e asfollows:
0 1 2 3 4

rate

Note 1: If fewer values are supplied than the declared size of the array the remaining elements are assigned 0.

II. Data Structures and ADTs

Example:
doubl e rate[5] = {0.11, 0.13, O0.16};
intializesr at e asfollows:

rate

Note 2: Itisan error if more values are supplied than the declared size of the array.
How this error is handled, however, will vary from one compiler to another.

In gnu C++77?

Note 3: If novalues are supplied, array elements are undefined (i.e., garbage values).

b. Character arrays:
They may beinitialized in the same manner as numeric arrays.

Example:

declaresvowel to be an array of 5 characters and initializes it as follows:
0 1 2 3 4

vowel

Note 1: If fewer values are supplied than the declared size of the array, the zeros used to fill unitialized elements are

interpreted asthe
Example:
const int NAME LENGTH = 10;
char coll egeNane[NAME LENGTH = {'C, 'a', '"I', "v', "i', 'n};

initializes col | egeNane asfollows:
0O 1 2 3 4 5 6 7 8 9

col | egeNane

Note 2: Character arrays may be initialized using string constants. For example, the following declaration
is equivalent to the preceding:

char
col | egeNane[NAME_LENGTH] =

II. Data Structures and ADTs

Note 3: The null character ' \ 0' (ASCII codeis0) isused as

Thus, character arrays used to store strings should be declared large enough to

If it is not, one cannot expect some of the string functions and operations to work correctly. If acharacter array is
initialized with a string constant, the

32

provided thereisroom for it.

Example:

c. Initializations with no array size specified

The array capacity may be omitted in an array declaration with an initializer list. In_this case, the number of elements

inthe array will be

Example:

Note: This explains the bracketsin constant declarations such as:
const char IN_FILE[] = "enpl oyee. dat";

5. Addresses
When an array is declared, the address of the first byte (or word) in the block of memory associated with the array is called

the of thearray. Each array referenceis then trandated into an from this base address.

For example, suppose each element of array scor e will be stored in 8 bytes and the base address of scor e is0x1396.
A statement such as

cout << score[3] << endl;

requiresthat the array referencescor e[3] first be trangated into a memory address:

score[3] ®

The contents of the memory word with this address Ox13ae can then be retrieved and displayed. An

likethisis carried out each time an array element is accessed.

For an array variablearray_name, itsvalueis actually and

11-10 1. Data Structuresand ADTs
isthe address of array_name[index] . Anarray reference
array_name[index]
is equivalent to
Here, * isthe operator;

*ref returns:

For example, the statement

cout << score[3] << endl;

could also be written

cout << << endl;

Note: No bounds checking of indices is done! (See pp. 50-51)

D. C-Style Multidimensional Arrays

1. Introduction
Example: Suppose we wish to store and process a table of test scores for several different students on several different

tests:

Test 1 Test 2 Test3 Testd
Student 1 99.0 935 89.0 91.0
Student 2 66.0 68.0 845 82.0
Student 3 885 785 70.0 65.0
Student-n 100.0 995 100.0 99.0

Use atwo-dimensiona array.

2. Declaring two-dimensional arrays
a Usual form of declaration:
element_type array_name[NUM_ROWS] [NUM_COLUMNS] ;

Example:

const int NUM ROA5 = 30,
NUM_COLUMNS = 5;

orusing at ypedef :

const int NUM ROA5 = 30,
NUM_COLUMNS = 5;

II. Data Structures and ADTs

b. Initializing
List theinitial valuesin braces, row by row; may use internal braces for each row to improve readability.

Example:

double rates[2][3] =

3. Processing_ two-dimensional arrays
Use doubly-indexed variables:

Example: scoresTabl e[2] [3] istheentry in row 2 (numbered from 0) and
- - column 3 (numbered from Q)
rowindex column index

Typically use nested loops to vary the two indices, most oftenin a manner.
Example:

int nunttudents, nunilests,
i, j; /1 indices;

cout >> "# students and # of tests? ";
cin >> nunBtudents >> nunilests;

cout << "Enter " << nunifests << " test scores for student\n";
for (i = 0; i < nunBtudents; i++)
{

cout << '"#' << i + 1 << """

for (j =0; j < nuniests; | ++)

4. Higher-Dimensional Arrays
The methods for two-dimensional arrays extend in the obvious way.

a. Example: To store and process atable of test scores for several different students on several different testsfor
severd different semesters:

const int RANKS = 10, ROA5 = 30, COLUMNS = 5;

t ypedef

isthe score on page 4 (numbered from 0)
for student 2 (numbered from 0)
on test 3 (numbered from 0)

11-12 II. Data Structures and ADTs

b. Still higher dimensions
Example like the automobile-inventory example on pp. 54-5

enum BrandType {Levi, Wangler, CalvinKlein, Lee, BigYank, NUM BRANDS};
enum Styl eType {baggy, tapered, straightleg, designer, NUM STYLES};
enum Wi st Type {w28, w29, w30, w31, w32, w33, w34, w35, w36,
w37, w38, w39, w40, w4l, w42, w43, w44, w45,
w46, w47, w48, NUM WAI ST_SI ZES};
enum | nseanilype {i 26, i27, i28, i29, i30, i31, i32, i33, i34, i34, i36,
NUM_| NSEAM SI ZES} ;

typdef int
JeansArray[NUM_BRANDS] [NUM_STYLES] [NUM WAl ST_SI ZES] [NUM_| NSEAM_SI ZES] ;

JeansArray jeansl nStock;

The value of
j eansl nSt ock[Levi][Desi gner][w32] [i 31]

isthe number of Levi'sdesigner 32~ 31 jeansthat arein stock. The statement
j eansl nSt ock[Brand] [styl e] [wai st][insean--;

might be used to record the sale (i.e., decrement the inventory) of one pair of jeans of brand br and, style st yl e, waist
size wai st , and inseam length i nseam

5. Arrays of Arrays
Consider again the declaration
doubl e scoresTabl e[30][4];

Thisisrealy adeclaration of aone-dimensional array having 30 elements, each of which isaone-dimensional array of 4
real numbers; that is, scor esTabl e isaone-dimensional array of rows, each of which has 4 real values. This
declaration is thus equivalent to a declaration like

or, sincet ypedef isused once, why not use it twice:

With any of the declarations, we can aways view atwo-dimensiona array likescor esTabl e asan array of rows of a
table. Infact,

scoresTabl e[i] is

Then, scoresTabl e[i][j] should bethought of as (scoresTabl e[i])[]],thatis, asfinding
thej -th element of scoresTabl e[i].

II. Data Structures and ADTs

6.

E.

Address Trandation:

This array-of-arrays nature of multidimensional arrays also explains how address trandation is carried out. Suppose the
base addressof scor esTabl e is0x12345:

scoresTabl e[10] [3]

What about higher-dimensional arrays?
An n-dimensional array should be viewed (recursively) as a one-dimensional array whose elements are
(n- 1)-dimensiona arrays.

Arrays as Parameters
Passing an array to afunction actually passes the base address of the array. Thus the parameter has the

, SO

This also means that the array capacity is not available to the function unless passed as a separate parameter.
Example: Invoid Print(theArray[100], int theSize);

can just aswell use:

Now, what about multidimensional arrays?
void Print(double table[][], int rows, int cols)

doesn't work. Best to use atypedef to declare a global type identifier and use it to declare the types of the parameters.:

For example,

Assignment #2: Due: Friday., Feb. 19

Be able to answer questionsin Quick Quiz 2.3
P.61: 1,3,5,6,8,10,11, 13,15, 17,19

Intro. to Structs

11-14 II. Data Structures and ADTs

1. When is a structure needed?

Up to now, our approach to designing a program (and software in general) has been:

1. Identify the objects in the problem.
la. ...
. |dentify the operations in the problem.
la. If the operation is not predefined, write afunction to performit.
1b. If the function is useful for other problems, storeitinalibrary.
. Organize the objects and operations into an algorithm.
. Code the algorithm as a program.
. Test, execute, and debug the program.
. Maintain the program

N

o0k w

Since predefined types may not be adequate, we add:

1a. If the predefined types are not adequate to model the object,
create a new data type to model it (e.g., enumerations).

Now, suppose the object being modeled has

Examples:
A temperature has:
— a degress attribute
— a scale attribute (Fahreneit, Celsius, Kelvin)

| 32 F
degrees scale
A date has:
— amonth attribute

— a day attribute
— ayear attribute

|Septenber| 23 | 1998 |
month day year

C++ provides and to create new types with multiple attributes. So we might add to
our design methodology:

1. Identify the objectsin the problem.
la. If the predefined types are not adequate to model the object,
create a new type to mode it.
1b. If the object has multiple attributes, create a struct or class to represent
objects of that type.

2. Asan ADT, astruct (usually abbreviated to struct and sometimes called arecord) islike an array in that it is has afixed
Size, it is ordered, and the basic operation is direct access to so that items can be stored in / retrieved from them; but it differs

from an array in that its elements may be of

3. Declaration (C-style):
struct TypeName

decl arations of nenbers /1 of any types

s

Il. Data Structuresand ADTs
4. Examples:
a. Temperature:]
|32 F |
degrees scale
b. Date:
|Septenber| 23 | 1998 |
month day year
c. Phone Listing:
|John Q Doe | 12345 Calvin Rd. |Gand Rapids, M | 9571234 |
name Street city & state phone #
struct Directorylisting
{
string nane, /'l nane of person
street, /] street address
ci t yAndSt at e; /1 city, state (no zip)
unsi gned phoneNunber; // 7-digit phone nunber
i
Directorylisting entry, /1 entry in phone book
group[20] ; /] array of directory listings
d. Coordinates of a point: (Members need not have different types.)
| 3.73 | -2.51 |
struct Poi nt
doubl e xCoord,
yCoor d;
b
Point p, q;
d. Test scores: (Members may be structured types — e.g., arrays.)
| 012345 | 83 | 79| 92[85 |
id-number list of scores

struct Test Record

{
unsi gned i dNunber,

score[4];
b

Test Record
student Record, gradeBook[30];

5. Heirarchical (or nested) structs

11-16 II. Data Structures and ADTs

Since the type of a member may be any type, it may be another struct. For example,
|John Q Doe|12345 Calvin Rd|Gand Rapids, M| 9571234] June| 17] 1975[3.95|92.5 |

name street city & state phone# month day year gpa credits
\ DirectoryListing /\ Date / real red
struct Personal I nfo
{

DirectorylListing ident;

Date birth;

doubl e cuntGPA,

credits;
b

Per sonal | nfo student;

6. The scope of amember identifier isthe struct in which it is defined.

Consequences:
— A member identifier may be used outside the struct for some other purpose.
— A member cannot be accessed outside the struct just by giving its name.

7. Direct access to members of a struct (or class) isimplemented using

one of theseisthe

struct_var.member_name

Examples:

Input a value into the mont h member of bi rt hday:

Calculate y coordinate of apoint ony = 1/x:
if (p.xCoord !'= 0.0)

p.yCoord = 1.0 / p.xCoord;
Sum the scoresin st udent Recor d:

doubl e sum
for (int i

0;
0; 1 < 4; i++)

Output the name stored in student:

cout <<

II. Data Structures and ADTs 11-17

F. A Quick Look at Unions

1. A union has adefinition like that of a struct, with "struct" replaced by "union"”:
uni on TypeName - %% %% %% TypeName is optiona
decl arations of nmenbers //of any types

H

2. A union differsfrom a struct in that the members . Memory is (typically) alocated for the largest
member, and all the other members share this memory.

Example:

#i ncl ude <i ostreanr
usi ng nanmespace std;

struct Struct

t
int i;
doubl e d;
bool b;
b
uni on Uni on
t
int i;
doubl e d;
bool b;
b
int main()
Struct s;
Uni on u;
s.i = 123456789;
u.i = 123456789;
cout << "Structure: " << s.i << " and " << s.d << " "
<< (s.b ? "true" : "false") << endl
cout << "Union: "< ui <<" and " << u.d << " "
<< (u.b ? "true" : "false") << endl
s.d = 0.123;
u.d = 0.123
cout << "Structure: " << s.i << " and " << s.d << " "
<< (s.b ? "true" : "false") << endl
cout << "Union: "< ui <<" and " << u.d<<" "
<< (u.b ? "true" : "false") << endl
s.b = true
u.b = true
cout << "Structure: " << s.i << " and " << s.d << " "
<< (s.b ? "true" : "false") << endl
cout << "Union: " << ui o <<" and " << u.d << " "
<< (u.b ? "true" : "false") << endl

11-18

II. Data Structures and ADTs

Execution:

Structure: 123456789 and 6. 95336e-310 fal se
Uni on: 123456789 and 3.21193e-273 true
Structure: 123456789 and 0.123 false

Uni on: 1069513965 and 0. 123 true
Structure: 123456789 and 0.123 true

Uni on: 97517 and 2. 06932e-309 true

Note: If datais stored in aunion using one member and accessed using another member of a different type, the results are
implementation dependent.

3. Example: Suppose afile contains:

John Doe 40 M
January 30 1980

Mary Smith Doe 8
Fred Jones 17 S

T

Jane VanderVan 24 D
February 21 1998 N
Peter VanderVan 25 W
February 22 1998 Y

name, age, marital status (married)
wedding date

spouse, # dependents

name, age, marital status (single)
available

name, age, marital status (divorced)
divorce date, remarried (NO)]

name, age, marital status (widower)
date became awidower, remarried (Y es)

ARA

ANNNNANNA

VARAN

Since there are three types of records, we would need three types of structs:

struct MarriedPerson
{
string nane;
short age;
char mar St at us;
Dat e weddi ng;
string spouse;
short dependents;

H

struct Singl ePerson
{
string nane;
short age;
char mar St at us;
bool avail abl e;

b

/I S =single, M= nmarried, W= was married
/| date s/he was narried

/1 name of spouse

/'l number of dependents

/1 true if person is available, else false

struct WasMarri edPer son

{
string nane;
short age;
char nar St at us;

Date divorceOrDeath;// date s/he was divorced/ w dow(er)ed

char remarri ed;

[/ Y or N

II. Data Structures and ADTs 11-19

4. Structs like these with some common members — — but other fields that are different can be combined

into a single structure by using a

struct Date
{

string nonth;
short day, year;

};

struct Marriedlnfo

{
Dat e weddi ng;

string spouse
short dependents;

b

struct Singlelnfo

{
s

struct WasMarri edl nfo

bool avail abl e;

Dat e di vorceOr Deat h;
char remarri ed;

—toadd a

S =single, M= rmarried, W= was narried

}1
struct Personal I nfo
{
string nane;
short age;
char marStatus; //
uni on
Marriedl nfo marri ed;
Si ngl el nfo singl e;
WasMarri edl nfo wasMarri ed;
s
b

Per sonal | nf o person;

Typicaly process such astructure using aswi t ch for the variant part: e.g.,

cin >> person.nane >> person.age >> person. mar St at us;

swi t ch(Per son. mar St at us)
{
case 'M: cin >> person.
>> person.
>> person.
>> person.
>> person.
br eak;

mar ri ed. weddi ng. nont h
mar ri ed. weddi ng. day
mar ri ed. weddi ng. year
mar ri ed. spouse

mar ri ed. dependent s;

case 'S': cin >> avail abl e;

br eak;

case 'W: cout << "Enter

cin >> person.
>> person.
>> person.
>> person.

5. Address trandation for structs and unions:

wasMarri ed. di vorceOr Deat h. nont h
wasMarri ed. di vor ceOr Deat h. day
wasMarri ed. di vor ceOr Deat h. year
wasMarried.remarri ed;

(p. 70)

11-20 II. Data Structures and ADTs

enum Year I nSchool {fresh, soph, jun, sen, spec};
struct StudentRecord

{
i nt nunber;
char nanme[21];
doubl e score[3];
Year | nSchool year;
}

/| Personal I nfo as before
St udent Record s;
Per sonal I nfo p;

Addresses:
s = 0x33al8
p = 0x339d8
Struct S

0x33al8 nunber

0x33alc nane

0x33a38 score

0x33a50 year

Struct P:

0x339d8 nane

0x339ee age

0x339f 0 mar St at us

0x339f 2 marri ed. weddi ng. nont h

0x339fc marri ed. weddi ng. day

0x339f e marri ed. weddi ng. year

0x33a00 marri ed. spouse

0x33al6 married. dependents

0x339f 2 washarri ed. di vor ceOr Deat h. nont h
0x339f ¢ wasMarri ed. di vor ceOr Deat h. Day
0x339f e wasMarri ed. di vor ceOr Deat h. year
0x33a00 wasMarried.remarried

If astruct s hasfieldsfq, ..., fp, requiring wy, ..., wn cells of storage, respectively:

Addressof s.fx = baseaddressof s + offset

For structs like p that contain unions: Allocate space for the largest variant, and then overlay variantsin this space.

II. Data Structures and ADTs 11-21

6. These kinds of variant structures aren't used much anymore. (p. 69)

Instead, in OOP languages:
» Encapsulate the common informationin a

e Use to build for the variants
(Derived classes inherit al of the non-private members of the base class.)

Per sonal | nfo

narme
base class— | age
mar St at us
' nane : ' name : ! nane :
'age : 1 age : | age :
derived classess —® | ' narStatus | ' mar Status | mar St at us .
weddi ng avail abl e di vorceOr Deat h
zpousg ¢ Si ngl ePer son remarried
ependaent s VasMar ri edPer son

Mar ri edPer son

G. A commercial for OOP
Two programming paradigms:

: commonly used withprocedural languages such as C, FORTRAN, and Pascal

Action-oriented — concentrates on the verbs of a problem's specification

Programmers:
e |dentify basic tasks to be performed to solve problem
e Implement the actions required to do these tasks as subprograms (procedures/functions/subroutines)

« Group these subprogramsinto programs/modul ed/libraries, which together make up a complete system for solving the
problem

. Usesin OOP languages like C++, Java, and Smalltalk

Focuses on the nouns of a problem'’s specification
Programmer:
« Determine what objects are needed for a problem and how they should work together to solve the problem.

e Create types caled classes made up ofdata members and function members to operate on the data. Instances of atype
(class) are called objects.

11-22 II. Data Structures and ADTs

An Example — Creating a Data Type in a procedural (C-type) language (pp. 74-78)

Problem: Create atype Ti ne for processing timesin standard hh:mm AM/PM form and in military-time form.

Data Members:

Hours (0, 1, ..., 12)

Minutes (0, 1, 2, ..., 59)

AM or PM indicator (‘A" or 'P)
MilTime (military time equivalent)

Some Operations :

1. Setthetime

2. Display thetime

3. Advancethetime

4. Determineif onetimeisless than another time.

Implementation:
1. Need for the datamembers— use a
2. Need for the operations.

3. "Package" declarations of these together in a

See Fogire 2.2

II. Data Structures and ADTs

7. Problems with C-Style Arrays

a

Solution 1 (non-OO0P): Use run-time arrays.

— Construct B to have required capacity

— Copy elements of A into first part of B

— Dedllocate A

Solution 2 (OOP): Use

b. Therearevirtually no

which do this automatically.

Basic reason for this disparity:

There is no numeric equivalent of that can be used to
Start Quit_
processing processing
here here
| |
nane | J o h n D o | e \0 | \O
(o1 [(21 (3] [4 [5] (6 [7] [8 [9]
Start :
v Quit
processing rocessin
helre Nhere??:
\J
intArray | 6 2 0 1 5 2 0 0 0 0
(o1 [[21 (3] [4 [5] [6 [71 [8 [9]

11-24 II. Data Structures and ADTs

Solution 1 (non-OOP): In addition to the array, passits (and perhapsiits) to functions.

Example Function to output an array of doubl es:

void Print(ostream & out, double theArray[],)
for (int i = 0; D0 +t)
out << theArray[i] << endl;
}
Function call: Print(cout, dubArray,);

Example Function to input an array of doubl es:

void Read(istream & in, double theArray[],

)
{ .
for (1)
{
in >> theArray] 1;
if (in.eof()) break;
if () // prevent out-of-range error
{
cerr << "\nRead warning: array is full!\n";
return;
}
}
}
Function call: int nySize;

Read(cin, dubArray, CAPACITY, nySize);

e The Deeper Problem.

One of the principles of object-oriented programming is that ,

which means that it should

C-style arrays violate this principle. In particular, they carry neither their size nor their capacity within them, and so
C-style arrays are not self-contained objects.

Solution 2 (OOP): all three pieces of information — the array, its capacity and its size —

. Thisisthe approach used by thevect or classtemplate.

